import gradio as gr import spaces from huggingface_hub import hf_hub_download # def download_models(model_id): # hf_hub_download("SakshiRathi77/void-space-detection/weights", filename=f"{model_id}", local_dir=f"./") # return f"./{model_id}" def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_threshold): """ Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust the input size and apply test time augmentation. :param model_path: Path to the YOLOv9 model file. :param conf_threshold: Confidence threshold for NMS. :param iou_threshold: IoU threshold for NMS. :param img_path: Path to the image file. :param size: Optional, input size for inference. :return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying. """ # Import YOLOv9 import yolov9 # Load the model # model_path = download_models() model = yolov9.load(best.pt, device="cuda:0") # Set model parameters model.conf = conf_threshold model.iou = iou_threshold # Perform inference results = model(img_path, size=image_size) # Optionally, show detection bounding boxes on image output = results.render() return output[0] def app(): with gr.Blocks(): with gr.Row(): with gr.Column(): img_path = gr.Image(type="filepath", label="Image") model_path = "best.pt" image_size = gr.Slider( label="Image Size", minimum=320, maximum=1280, step=32, value=640, ) conf_threshold = gr.Slider( label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4, ) iou_threshold = gr.Slider( label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5, ) yolov9_infer = gr.Button(value="Inference") with gr.Column(): output_numpy = gr.Image(type="numpy",label="Output") yolov9_infer.click( fn=yolov9_inference, inputs=[ img_path, model_path, image_size, conf_threshold, iou_threshold, ], outputs=[output_numpy], ) gradio_app = gr.Blocks() with gradio_app: gr.HTML( """

YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information

""") gr.HTML( """

Follow me for more!

""") with gr.Row(): with gr.Column(): app() gradio_app.launch(debug=True) # make sure you have the following dependencies # import gradio as gr # import torch # from torchvision import transforms # from PIL import Image # # Load the YOLOv9 model # model_path = "best.pt" # Replace with the path to your YOLOv9 model # model = torch.load(model_path) # # Define preprocessing transforms # preprocess = transforms.Compose([ # transforms.Resize((640, 640)), # Resize image to model input size # transforms.ToTensor(), # Convert image to tensor # ]) # # Define a function to perform inference # def detect_void(image): # # Preprocess the input image # image = Image.fromarray(image) # image = preprocess(image).unsqueeze(0) # Add batch dimension # # Perform inference # with torch.no_grad(): # output = model(image) # # Post-process the output if needed # # For example, draw bounding boxes on the image # # Convert the image back to numpy array # # and return the result # return output.squeeze().numpy() # # Define Gradio interface components # input_image = gr.inputs.Image(shape=(640, 640), label="Input Image") # output_image = gr.outputs.Image(label="Output Image") # # Create Gradio interface # gr.Interface(fn=detect_void, inputs=input_image, outputs=output_image, title="Void Detection App").launch()