# import gradio as gr # import spaces # from huggingface_hub import hf_hub_download # def download_models(model_id): # hf_hub_download("SakshiRathi77/void-space-detection", filename=f"{model_id}", local_dir=f"./") # return f"./{model_id}" # @spaces.GPU # def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_threshold): # """ # Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust # the input size and apply test time augmentation. # :param model_path: Path to the YOLOv9 model file. # :param conf_threshold: Confidence threshold for NMS. # :param iou_threshold: IoU threshold for NMS. # :param img_path: Path to the image file. # :param size: Optional, input size for inference. # :return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying. # """ # # Import YOLOv9 # import yolov9 # # Load the model # model_path = download_models(model_id) # model = yolov9.load(model_path, device="cuda:0") # # Set model parameters # model.conf = conf_threshold # model.iou = iou_threshold # # Perform inference # results = model(img_path, size=image_size) # # Optionally, show detection bounding boxes on image # output = results.render() # return output[0] # def app(): # with gr.Blocks(): # with gr.Row(): # with gr.Column(): # img_path = gr.Image(type="filepath", label="Image") # model_path = gr.Dropdown( # label="Model", # choices=[ # "state_dict.pt" # ], # value="state_dict.pt", # ) # image_size = gr.Slider( # label="Image Size", # minimum=320, # maximum=1280, # step=32, # value=640, # ) # conf_threshold = gr.Slider( # label="Confidence Threshold", # minimum=0.1, # maximum=1.0, # step=0.1, # value=0.4, # ) # iou_threshold = gr.Slider( # label="IoU Threshold", # minimum=0.1, # maximum=1.0, # step=0.1, # value=0.5, # ) # yolov9_infer = gr.Button(value="Inference") # with gr.Column(): # output_numpy = gr.Image(type="numpy",label="Output") # yolov9_infer.click( # fn=yolov9_inference, # inputs=[ # img_path, # model_path, # image_size, # conf_threshold, # iou_threshold, # ], # outputs=[output_numpy], # ) # # gr.Examples( # # examples=[ # # [ # # "data/zidane.jpg", # # "gelan-e.pt", # # 640, # # 0.4, # # 0.5, # # ], # # [ # # "data/huggingface.jpg", # # "yolov9-c.pt", # # 640, # # 0.4, # # 0.5, # # ], # # ], # # fn=yolov9_inference, # # inputs=[ # # img_path, # # model_path, # # image_size, # # conf_threshold, # # iou_threshold, # # ], # # outputs=[output_numpy], # # cache_examples=True, # # ) # gradio_app = gr.Blocks() # with gradio_app: # gr.HTML( # """ #