import torch from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr # Load model and tokenizer model_name = "tomg-group-umd/huginn-0125" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name) # Function to generate text def generate_response(prompt, num_steps): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device) model.eval() with torch.no_grad(): output = model.generate(input_ids, num_steps=num_steps, max_length=256) response = tokenizer.decode(output[0], skip_special_tokens=True) return response # Gradio interface iface = gr.Interface( fn=generate_response, inputs=[ gr.Textbox(lines=5, label="Input Prompt"), gr.Slider(minimum=4, maximum=64, step=1, value=16, label="Computation Scale (num_steps)") ], outputs="text", title="Huginn-0125 Text Generation", description="Generate text using the Huginn-0125 model with adjustable computation scale." ) # Run app if __name__ == "__main__": iface.launch()