Spaces:
Build error
Build error
initial commit of app.py
Browse files
app.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import os
|
4 |
+
import TDTSR
|
5 |
+
import pytesseract
|
6 |
+
from pytesseract import Output
|
7 |
+
import postprocess as pp
|
8 |
+
import pandas as pd
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
13 |
+
from cv2 import dnn_superres
|
14 |
+
|
15 |
+
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
20 |
+
st.set_page_config(layout='wide')
|
21 |
+
st.title("Table Detection and Table Structure Recognition")
|
22 |
+
|
23 |
+
c1, c2, c3 = st.columns((1,1,1))
|
24 |
+
|
25 |
+
|
26 |
+
def PIL_to_cv(pil_img):
|
27 |
+
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
28 |
+
|
29 |
+
def cv_to_PIL(cv_img):
|
30 |
+
return Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
|
31 |
+
|
32 |
+
def pytess(cell_pil_img):
|
33 |
+
return ' '.join(pytesseract.image_to_data(cell_pil_img, output_type=Output.DICT, config='preserve_interword_spaces')['text']).strip()
|
34 |
+
|
35 |
+
def TrOCR(cell_pil_img):
|
36 |
+
|
37 |
+
processor = TrOCRProcessor.from_pretrained("SalML/trocr-base-printed")
|
38 |
+
model = VisionEncoderDecoderModel.from_pretrained("SalML/trocr-base-printed")
|
39 |
+
pixel_values = processor(images=cell_pil_img, return_tensors="pt").pixel_values
|
40 |
+
|
41 |
+
generated_ids = model.generate(pixel_values)
|
42 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
43 |
+
|
44 |
+
return generated_text
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
def super_res(pil_img):
|
49 |
+
# requires opencv-contrib-python installed without the opencv-python
|
50 |
+
sr = dnn_superres.DnnSuperResImpl_create()
|
51 |
+
image = PIL_to_cv(pil_img)
|
52 |
+
model_path = "./LapSRN_x8.pb"
|
53 |
+
model_name = model_path.split('/')[1].split('_')[0].lower()
|
54 |
+
model_scale = int(model_path.split('/')[1].split('_')[1].split('.')[0][1])
|
55 |
+
|
56 |
+
sr.readModel(model_path)
|
57 |
+
sr.setModel(model_name, model_scale)
|
58 |
+
final_img = sr.upsample(image)
|
59 |
+
final_img = cv_to_PIL(final_img)
|
60 |
+
|
61 |
+
return final_img
|
62 |
+
|
63 |
+
|
64 |
+
def sharpen_image(pil_img):
|
65 |
+
|
66 |
+
img = PIL_to_cv(pil_img)
|
67 |
+
sharpen_kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
|
68 |
+
# sharpen_kernel = np.array([[0, -1, 0],
|
69 |
+
# [-1, 5,-1],
|
70 |
+
# [0, -1, 0]])
|
71 |
+
sharpen = cv2.filter2D(img, -1, sharpen_kernel)
|
72 |
+
pil_img = cv_to_PIL(sharpen)
|
73 |
+
return pil_img
|
74 |
+
|
75 |
+
|
76 |
+
def preprocess_magic(pil_img):
|
77 |
+
|
78 |
+
cv_img = PIL_to_cv(pil_img)
|
79 |
+
grayscale_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2GRAY)
|
80 |
+
_, binary_image = cv2.threshold(grayscale_image, 0, 255, cv2.THRESH_OTSU)
|
81 |
+
|
82 |
+
count_white = np.sum(binary_image > 0)
|
83 |
+
count_black = np.sum(binary_image == 0)
|
84 |
+
|
85 |
+
if count_black > count_white:
|
86 |
+
binary_image = 255 - binary_image
|
87 |
+
|
88 |
+
black_text_white_background_image = binary_image
|
89 |
+
|
90 |
+
return cv_to_PIL(black_text_white_background_image)
|
91 |
+
|
92 |
+
|
93 |
+
### main code:
|
94 |
+
for td_sample in os.listdir('D:/Jupyter/Multi-Type-TD-TSR/TD_samples/'):
|
95 |
+
|
96 |
+
image = Image.open("D:/Jupyter/Multi-Type-TD-TSR/TD_samples/"+td_sample).convert("RGB")
|
97 |
+
model, image, probas, bboxes_scaled = TDTSR.table_detector(image, THRESHOLD_PROBA=0.6)
|
98 |
+
TDTSR.plot_results_detection(c1, model, image, probas, bboxes_scaled)
|
99 |
+
cropped_img_list = TDTSR.plot_table_detection(c2, model, image, probas, bboxes_scaled)
|
100 |
+
|
101 |
+
for unpadded_table in cropped_img_list:
|
102 |
+
# table : pil_img
|
103 |
+
table = TDTSR.add_margin(unpadded_table)
|
104 |
+
model, image, probas, bboxes_scaled = TDTSR.table_struct_recog(table, THRESHOLD_PROBA=0.6)
|
105 |
+
|
106 |
+
# The try, except block of code below plots table header row and simple rows
|
107 |
+
try:
|
108 |
+
rows, cols = TDTSR.plot_structure(c3, model, image, probas, bboxes_scaled, class_to_show=0)
|
109 |
+
rows, cols = TDTSR.sort_table_featuresv2(rows, cols)
|
110 |
+
# headers, rows, cols are ordered dictionaries with 5th element value of tuple being pil_img
|
111 |
+
rows, cols = TDTSR.individual_table_featuresv2(table, rows, cols)
|
112 |
+
# TDTSR.plot_table_features(c1, header, row_header, rows, cols)
|
113 |
+
except Exception as printableException:
|
114 |
+
st.write(td_sample, ' terminated with exception:', printableException)
|
115 |
+
|
116 |
+
# master_row = TDTSR.master_row_set(header, row_header, rows, cols)
|
117 |
+
master_row = rows
|
118 |
+
|
119 |
+
# cells_img = TDTSR.object_to_cells(master_row, cols)
|
120 |
+
cells_img = TDTSR.object_to_cellsv2(master_row, cols)
|
121 |
+
|
122 |
+
headers = []
|
123 |
+
cells_list = []
|
124 |
+
# st.write(cells_img)
|
125 |
+
for n, kv in enumerate(cells_img.items()):
|
126 |
+
k, row_images = kv
|
127 |
+
if n == 0:
|
128 |
+
for idx, header in enumerate(row_images):
|
129 |
+
# plt.imshow(header)
|
130 |
+
# c2.pyplot()
|
131 |
+
# c2.write(pytess(header))
|
132 |
+
############################
|
133 |
+
SR_img = super_res(header)
|
134 |
+
# # w, h = SR_img.size
|
135 |
+
# # SR_img = SR_img.crop((0 ,0 ,w, h-60))
|
136 |
+
# plt.imshow(SR_img)
|
137 |
+
# c3.pyplot()
|
138 |
+
# c3.write(pytess(SR_img))
|
139 |
+
header_text = pytess(SR_img)
|
140 |
+
if header_text == '':
|
141 |
+
header_text = 'empty_col'+str(idx)
|
142 |
+
headers.append(header_text)
|
143 |
+
|
144 |
+
|
145 |
+
else:
|
146 |
+
for cells in row_images:
|
147 |
+
# plt.imshow(cells)
|
148 |
+
# c2.pyplot()
|
149 |
+
# c2.write(pytess(cells))
|
150 |
+
##############################
|
151 |
+
SR_img = super_res(cells)
|
152 |
+
# # w, h = SR_img.size
|
153 |
+
# # SR_img = SR_img.crop((0 ,0 ,w, h-60))
|
154 |
+
# plt.imshow(SR_img)
|
155 |
+
# c3.pyplot()
|
156 |
+
# c3.write(pytess(SR_img))
|
157 |
+
cells_list.append(pytess(SR_img))
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
df = pd.DataFrame("", index=range(0, len(master_row)), columns=headers)
|
162 |
+
|
163 |
+
cell_idx = 0
|
164 |
+
|
165 |
+
for nrows in range(len(master_row)-1):
|
166 |
+
for ncols in range(len(cols)):
|
167 |
+
|
168 |
+
df.iat[nrows, ncols] = cells_list[cell_idx]
|
169 |
+
cell_idx += 1
|
170 |
+
|
171 |
+
c3.dataframe(df)
|
172 |
+
# break
|
173 |
+
|