Spaces:
Runtime error
Runtime error
SaladSlayer00
commited on
Commit
•
9e0f5c5
1
Parent(s):
f4d2144
Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,90 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import cv2
|
3 |
-
import os
|
4 |
-
import boto3
|
5 |
-
|
6 |
-
s3_client = boto3.client(
|
7 |
-
's3',
|
8 |
-
aws_access_key_id='
|
9 |
-
aws_secret_access_key='CKxcJhYPNQHBmnVKrcK6wjxD3QV0gdj7HvVw7JWl',
|
10 |
-
region_name='eu-central-1'
|
11 |
-
)
|
12 |
-
|
13 |
-
def upload_to_s3(bucket_name, folder_name):
|
14 |
-
# Upload files in the folder to S3 bucket
|
15 |
-
for filename in os.listdir(folder_name):
|
16 |
-
if filename.endswith('.png'):
|
17 |
-
file_path = os.path.join(folder_name, filename)
|
18 |
-
s3_client.upload_file(file_path, bucket_name, f"{folder_name}/{filename}")
|
19 |
-
|
20 |
-
def process_video(uploaded_video, name, surname, interval_ms):
|
21 |
-
try:
|
22 |
-
if uploaded_video is None:
|
23 |
-
return "No video file uploaded."
|
24 |
-
|
25 |
-
folder_name = f"{name}_{surname}"
|
26 |
-
os.makedirs(folder_name, exist_ok=True)
|
27 |
-
|
28 |
-
# The uploaded_video is a NamedString object, extract the file path
|
29 |
-
temp_video_path = uploaded_video.name
|
30 |
-
|
31 |
-
# Initialize face detector
|
32 |
-
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
33 |
-
|
34 |
-
# Open and process the video
|
35 |
-
vidcap = cv2.VideoCapture(temp_video_path)
|
36 |
-
if not vidcap.isOpened():
|
37 |
-
raise Exception("Failed to open video file.")
|
38 |
-
|
39 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
40 |
-
frame_interval = int(fps * (interval_ms / 10000))
|
41 |
-
|
42 |
-
frame_count = 0
|
43 |
-
saved_image_count = 0
|
44 |
-
success, image = vidcap.read()
|
45 |
-
while success and saved_image_count < 86:
|
46 |
-
if frame_count % frame_interval == 0:
|
47 |
-
# Apply face detection
|
48 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
49 |
-
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
50 |
-
for (x, y, w, h) in faces:
|
51 |
-
# Crop and resize face
|
52 |
-
face = image[y:y+h, x:x+w]
|
53 |
-
face_resized = cv2.resize(face, (160, 160))
|
54 |
-
cv2.imwrite(os.path.join(folder_name, f"{name}_{surname}_{saved_image_count:04d}.png"), face_resized)
|
55 |
-
saved_image_count += 1
|
56 |
-
if saved_image_count >= 86:
|
57 |
-
break
|
58 |
-
|
59 |
-
success, image = vidcap.read()
|
60 |
-
frame_count += 1
|
61 |
-
|
62 |
-
vidcap.release()
|
63 |
-
|
64 |
-
bucket_name = 'imagefilessml' # Replace with your bucket name
|
65 |
-
|
66 |
-
upload_to_s3(bucket_name, folder_name)
|
67 |
-
|
68 |
-
return f"Saved and uploaded {saved_image_count} face images"
|
69 |
-
|
70 |
-
|
71 |
-
return f"Saved {saved_image_count} face images in the folder: {folder_name}"
|
72 |
-
|
73 |
-
except Exception as e:
|
74 |
-
return f"An error occurred: {e}"
|
75 |
-
|
76 |
-
with gr.Blocks() as demo:
|
77 |
-
with gr.Row():
|
78 |
-
video = gr.File(label="Upload Your Video")
|
79 |
-
name = gr.Textbox(label="Name")
|
80 |
-
surname = gr.Textbox(label="Surname")
|
81 |
-
interval = gr.Number(label="Interval in milliseconds", value=1000)
|
82 |
-
submit_button = gr.Button("Submit")
|
83 |
-
|
84 |
-
submit_button.click(
|
85 |
-
fn=process_video,
|
86 |
-
inputs=[video, name, surname, interval],
|
87 |
-
outputs=[gr.Text(label="Result")]
|
88 |
-
)
|
89 |
-
|
90 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import os
|
4 |
+
import boto3
|
5 |
+
|
6 |
+
s3_client = boto3.client(
|
7 |
+
's3',
|
8 |
+
aws_access_key_id='AWS_ACCESS_KEY_ID',
|
9 |
+
aws_secret_access_key='CKxcJhYPNQHBmnVKrcK6wjxD3QV0gdj7HvVw7JWl',
|
10 |
+
region_name='eu-central-1'
|
11 |
+
)
|
12 |
+
|
13 |
+
def upload_to_s3(bucket_name, folder_name):
|
14 |
+
# Upload files in the folder to S3 bucket
|
15 |
+
for filename in os.listdir(folder_name):
|
16 |
+
if filename.endswith('.png'):
|
17 |
+
file_path = os.path.join(folder_name, filename)
|
18 |
+
s3_client.upload_file(file_path, bucket_name, f"{folder_name}/{filename}")
|
19 |
+
|
20 |
+
def process_video(uploaded_video, name, surname, interval_ms):
|
21 |
+
try:
|
22 |
+
if uploaded_video is None:
|
23 |
+
return "No video file uploaded."
|
24 |
+
|
25 |
+
folder_name = f"{name}_{surname}"
|
26 |
+
os.makedirs(folder_name, exist_ok=True)
|
27 |
+
|
28 |
+
# The uploaded_video is a NamedString object, extract the file path
|
29 |
+
temp_video_path = uploaded_video.name
|
30 |
+
|
31 |
+
# Initialize face detector
|
32 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
33 |
+
|
34 |
+
# Open and process the video
|
35 |
+
vidcap = cv2.VideoCapture(temp_video_path)
|
36 |
+
if not vidcap.isOpened():
|
37 |
+
raise Exception("Failed to open video file.")
|
38 |
+
|
39 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
40 |
+
frame_interval = int(fps * (interval_ms / 10000))
|
41 |
+
|
42 |
+
frame_count = 0
|
43 |
+
saved_image_count = 0
|
44 |
+
success, image = vidcap.read()
|
45 |
+
while success and saved_image_count < 86:
|
46 |
+
if frame_count % frame_interval == 0:
|
47 |
+
# Apply face detection
|
48 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
49 |
+
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
50 |
+
for (x, y, w, h) in faces:
|
51 |
+
# Crop and resize face
|
52 |
+
face = image[y:y+h, x:x+w]
|
53 |
+
face_resized = cv2.resize(face, (160, 160))
|
54 |
+
cv2.imwrite(os.path.join(folder_name, f"{name}_{surname}_{saved_image_count:04d}.png"), face_resized)
|
55 |
+
saved_image_count += 1
|
56 |
+
if saved_image_count >= 86:
|
57 |
+
break
|
58 |
+
|
59 |
+
success, image = vidcap.read()
|
60 |
+
frame_count += 1
|
61 |
+
|
62 |
+
vidcap.release()
|
63 |
+
|
64 |
+
bucket_name = 'imagefilessml' # Replace with your bucket name
|
65 |
+
|
66 |
+
upload_to_s3(bucket_name, folder_name)
|
67 |
+
|
68 |
+
return f"Saved and uploaded {saved_image_count} face images"
|
69 |
+
|
70 |
+
|
71 |
+
return f"Saved {saved_image_count} face images in the folder: {folder_name}"
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
return f"An error occurred: {e}"
|
75 |
+
|
76 |
+
with gr.Blocks() as demo:
|
77 |
+
with gr.Row():
|
78 |
+
video = gr.File(label="Upload Your Video")
|
79 |
+
name = gr.Textbox(label="Name")
|
80 |
+
surname = gr.Textbox(label="Surname")
|
81 |
+
interval = gr.Number(label="Interval in milliseconds", value=1000)
|
82 |
+
submit_button = gr.Button("Submit")
|
83 |
+
|
84 |
+
submit_button.click(
|
85 |
+
fn=process_video,
|
86 |
+
inputs=[video, name, surname, interval],
|
87 |
+
outputs=[gr.Text(label="Result")]
|
88 |
+
)
|
89 |
+
|
90 |
+
demo.launch()
|