Spaces:
Runtime error
Runtime error
Dongxu Li
commited on
Commit
•
120a3c2
1
Parent(s):
418bb25
added app
Browse files
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
|
3 |
+
import requests
|
4 |
+
import json
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
|
8 |
+
from io import BytesIO
|
9 |
+
|
10 |
+
def encode_image(image):
|
11 |
+
buffered = BytesIO()
|
12 |
+
image.save(buffered, format="JPEG")
|
13 |
+
buffered.seek(0)
|
14 |
+
|
15 |
+
return buffered
|
16 |
+
|
17 |
+
|
18 |
+
def query_api(image, prompt, decoding_method):
|
19 |
+
# local host for testing
|
20 |
+
url = "http://34.132.142.70:5000/api/generate"
|
21 |
+
|
22 |
+
data = {"prompt": prompt, "use_nucleus_sampling": decoding_method == "Nucleus sampling"}
|
23 |
+
|
24 |
+
image = encode_image(image)
|
25 |
+
files = {"image": image}
|
26 |
+
|
27 |
+
response = requests.post(url, data=data, files=files)
|
28 |
+
|
29 |
+
if response.status_code == 200:
|
30 |
+
return response.json()
|
31 |
+
else:
|
32 |
+
return "Error: " + response.text
|
33 |
+
|
34 |
+
|
35 |
+
def prepend_question(text):
|
36 |
+
text = text.strip().lower()
|
37 |
+
|
38 |
+
return "question: " + text
|
39 |
+
|
40 |
+
|
41 |
+
def prepend_answer(text):
|
42 |
+
text = text.strip().lower()
|
43 |
+
|
44 |
+
return "answer: " + text
|
45 |
+
|
46 |
+
|
47 |
+
def get_prompt_from_history(history):
|
48 |
+
prompts = []
|
49 |
+
|
50 |
+
for i in range(len(history)):
|
51 |
+
if i % 2 == 0:
|
52 |
+
prompts.append(prepend_question(history[i]))
|
53 |
+
else:
|
54 |
+
prompts.append(prepend_answer(history[i]))
|
55 |
+
|
56 |
+
return "\n".join(prompts)
|
57 |
+
|
58 |
+
|
59 |
+
def postp_answer(text):
|
60 |
+
if text.startswith("answer: "):
|
61 |
+
return text[8:]
|
62 |
+
elif text.startswith("a: "):
|
63 |
+
return text[2:]
|
64 |
+
else:
|
65 |
+
return text
|
66 |
+
|
67 |
+
|
68 |
+
def prep_question(text):
|
69 |
+
if text.startswith("question: "):
|
70 |
+
text = text[10:]
|
71 |
+
elif text.startswith("q: "):
|
72 |
+
text = text[2:]
|
73 |
+
|
74 |
+
if not text.endswith("?"):
|
75 |
+
text += "?"
|
76 |
+
|
77 |
+
return text
|
78 |
+
|
79 |
+
|
80 |
+
def inference(image, text_input, decoding_method, history=[]):
|
81 |
+
text_input = prep_question(text_input)
|
82 |
+
history.append(text_input)
|
83 |
+
|
84 |
+
# prompt = '\n'.join(history)
|
85 |
+
prompt = get_prompt_from_history(history)
|
86 |
+
# print("prompt: " + prompt)
|
87 |
+
|
88 |
+
output = query_api(image, prompt, decoding_method)
|
89 |
+
output = [postp_answer(output[0])]
|
90 |
+
history += output
|
91 |
+
|
92 |
+
chat = [(history[i], history[i+1]) for i in range(0, len(history)-1, 2)] # convert to tuples of list
|
93 |
+
|
94 |
+
return chat, history
|
95 |
+
|
96 |
+
|
97 |
+
inputs = [gr.inputs.Image(type='pil'),
|
98 |
+
gr.inputs.Textbox(lines=2, label="Text input"),
|
99 |
+
gr.inputs.Radio(choices=['Nucleus sampling','Beam search'], type="value", default="Nucleus sampling", label="Text Decoding Method"),
|
100 |
+
"state",
|
101 |
+
]
|
102 |
+
|
103 |
+
outputs = ["chatbot", "state"]
|
104 |
+
|
105 |
+
title = "BLIP-2"
|
106 |
+
description = """Gradio demo for BLIP-2, a multimodal chatbot from Salesforce Research. To use it, simply upload your image, or click one of the examples to load them. Please visit our <a href='https://github.com/salesforce/LAVIS/tree/main/projects/blip2' target='_blank'>project webpage</a>.</p>
|
107 |
+
<p> <strong>Disclaimer</strong>: This is a research prototype and is not intended for production use. No data including but not restricted to text and images is collected. </p>"""
|
108 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models</a>"
|
109 |
+
|
110 |
+
iface = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article)
|
111 |
+
iface.launch(enable_queue=True)
|