Spaces:
Runtime error
Runtime error
File size: 9,242 Bytes
d77a781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Import utilities: Utilities related to imports and our lazy inits.
"""
import importlib.util
import os
import sys
from collections import OrderedDict
from packaging import version
from . import logging
# The package importlib_metadata is in a different place, depending on the python version.
if sys.version_info < (3, 8):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()
_torch_version = "N/A"
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
_torch_available = importlib.util.find_spec("torch") is not None
if _torch_available:
try:
_torch_version = importlib_metadata.version("torch")
logger.info(f"PyTorch version {_torch_version} available.")
except importlib_metadata.PackageNotFoundError:
_torch_available = False
else:
logger.info("Disabling PyTorch because USE_TF is set")
_torch_available = False
_tf_version = "N/A"
if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
_tf_available = importlib.util.find_spec("tensorflow") is not None
if _tf_available:
candidates = (
"tensorflow",
"tensorflow-cpu",
"tensorflow-gpu",
"tf-nightly",
"tf-nightly-cpu",
"tf-nightly-gpu",
"intel-tensorflow",
"intel-tensorflow-avx512",
"tensorflow-rocm",
"tensorflow-macos",
"tensorflow-aarch64",
)
_tf_version = None
# For the metadata, we have to look for both tensorflow and tensorflow-cpu
for pkg in candidates:
try:
_tf_version = importlib_metadata.version(pkg)
break
except importlib_metadata.PackageNotFoundError:
pass
_tf_available = _tf_version is not None
if _tf_available:
if version.parse(_tf_version) < version.parse("2"):
logger.info(f"TensorFlow found but with version {_tf_version}. Diffusers requires version 2 minimum.")
_tf_available = False
else:
logger.info(f"TensorFlow version {_tf_version} available.")
else:
logger.info("Disabling Tensorflow because USE_TORCH is set")
_tf_available = False
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
_flax_available = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("flax") is not None
if _flax_available:
try:
_jax_version = importlib_metadata.version("jax")
_flax_version = importlib_metadata.version("flax")
logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
except importlib_metadata.PackageNotFoundError:
_flax_available = False
else:
_flax_available = False
_transformers_available = importlib.util.find_spec("transformers") is not None
try:
_transformers_version = importlib_metadata.version("transformers")
logger.debug(f"Successfully imported transformers version {_transformers_version}")
except importlib_metadata.PackageNotFoundError:
_transformers_available = False
_inflect_available = importlib.util.find_spec("inflect") is not None
try:
_inflect_version = importlib_metadata.version("inflect")
logger.debug(f"Successfully imported inflect version {_inflect_version}")
except importlib_metadata.PackageNotFoundError:
_inflect_available = False
_unidecode_available = importlib.util.find_spec("unidecode") is not None
try:
_unidecode_version = importlib_metadata.version("unidecode")
logger.debug(f"Successfully imported unidecode version {_unidecode_version}")
except importlib_metadata.PackageNotFoundError:
_unidecode_available = False
_modelcards_available = importlib.util.find_spec("modelcards") is not None
try:
_modelcards_version = importlib_metadata.version("modelcards")
logger.debug(f"Successfully imported modelcards version {_modelcards_version}")
except importlib_metadata.PackageNotFoundError:
_modelcards_available = False
_onnx_available = importlib.util.find_spec("onnxruntime") is not None
try:
_onnxruntime_version = importlib_metadata.version("onnxruntime")
logger.debug(f"Successfully imported onnxruntime version {_onnxruntime_version}")
except importlib_metadata.PackageNotFoundError:
_onnx_available = False
_scipy_available = importlib.util.find_spec("scipy") is not None
try:
_scipy_version = importlib_metadata.version("scipy")
logger.debug(f"Successfully imported transformers version {_scipy_version}")
except importlib_metadata.PackageNotFoundError:
_scipy_available = False
def is_torch_available():
return _torch_available
def is_tf_available():
return _tf_available
def is_flax_available():
return _flax_available
def is_transformers_available():
return _transformers_available
def is_inflect_available():
return _inflect_available
def is_unidecode_available():
return _unidecode_available
def is_modelcards_available():
return _modelcards_available
def is_onnx_available():
return _onnx_available
def is_scipy_available():
return _scipy_available
# docstyle-ignore
FLAX_IMPORT_ERROR = """
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
"""
# docstyle-ignore
INFLECT_IMPORT_ERROR = """
{0} requires the inflect library but it was not found in your environment. You can install it with pip: `pip install
inflect`
"""
# docstyle-ignore
PYTORCH_IMPORT_ERROR = """
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
"""
# docstyle-ignore
ONNX_IMPORT_ERROR = """
{0} requires the onnxruntime library but it was not found in your environment. You can install it with pip: `pip
install onnxruntime`
"""
# docstyle-ignore
SCIPY_IMPORT_ERROR = """
{0} requires the scipy library but it was not found in your environment. You can install it with pip: `pip install
scipy`
"""
# docstyle-ignore
TENSORFLOW_IMPORT_ERROR = """
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
"""
# docstyle-ignore
TRANSFORMERS_IMPORT_ERROR = """
{0} requires the transformers library but it was not found in your environment. You can install it with pip: `pip
install transformers`
"""
# docstyle-ignore
UNIDECODE_IMPORT_ERROR = """
{0} requires the unidecode library but it was not found in your environment. You can install it with pip: `pip install
Unidecode`
"""
BACKENDS_MAPPING = OrderedDict(
[
("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)),
("onnx", (is_onnx_available, ONNX_IMPORT_ERROR)),
("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)),
("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)),
]
)
def requires_backends(obj, backends):
if not isinstance(backends, (list, tuple)):
backends = [backends]
name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
checks = (BACKENDS_MAPPING[backend] for backend in backends)
failed = [msg.format(name) for available, msg in checks if not available()]
if failed:
raise ImportError("".join(failed))
class DummyObject(type):
"""
Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
`requires_backend` each time a user tries to access any method of that class.
"""
def __getattr__(cls, key):
if key.startswith("_"):
return super().__getattr__(cls, key)
requires_backends(cls, cls._backends)
|