Spaces:
Runtime error
Runtime error
root
commited on
Commit
·
d77a781
1
Parent(s):
cfccdc2
secret auth
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +1 -0
- app.py +27 -1
- edict_functions.py +971 -0
- my_diffusers/__init__.py +60 -0
- my_diffusers/__pycache__/__init__.cpython-38.pyc +0 -0
- my_diffusers/__pycache__/configuration_utils.cpython-38.pyc +0 -0
- my_diffusers/__pycache__/modeling_utils.cpython-38.pyc +0 -0
- my_diffusers/__pycache__/onnx_utils.cpython-38.pyc +0 -0
- my_diffusers/__pycache__/optimization.cpython-38.pyc +0 -0
- my_diffusers/__pycache__/pipeline_utils.cpython-38.pyc +0 -0
- my_diffusers/__pycache__/training_utils.cpython-38.pyc +0 -0
- my_diffusers/commands/__init__.py +27 -0
- my_diffusers/commands/diffusers_cli.py +41 -0
- my_diffusers/commands/env.py +70 -0
- my_diffusers/configuration_utils.py +403 -0
- my_diffusers/dependency_versions_check.py +47 -0
- my_diffusers/dependency_versions_table.py +26 -0
- my_diffusers/dynamic_modules_utils.py +335 -0
- my_diffusers/hub_utils.py +197 -0
- my_diffusers/modeling_utils.py +542 -0
- my_diffusers/models/__init__.py +17 -0
- my_diffusers/models/__pycache__/__init__.cpython-38.pyc +0 -0
- my_diffusers/models/__pycache__/attention.cpython-38.pyc +0 -0
- my_diffusers/models/__pycache__/embeddings.cpython-38.pyc +0 -0
- my_diffusers/models/__pycache__/resnet.cpython-38.pyc +0 -0
- my_diffusers/models/__pycache__/unet_2d.cpython-38.pyc +0 -0
- my_diffusers/models/__pycache__/unet_2d_condition.cpython-38.pyc +0 -0
- my_diffusers/models/__pycache__/unet_blocks.cpython-38.pyc +0 -0
- my_diffusers/models/__pycache__/vae.cpython-38.pyc +0 -0
- my_diffusers/models/attention.py +333 -0
- my_diffusers/models/embeddings.py +116 -0
- my_diffusers/models/resnet.py +483 -0
- my_diffusers/models/unet_2d.py +246 -0
- my_diffusers/models/unet_2d_condition.py +273 -0
- my_diffusers/models/unet_blocks.py +1481 -0
- my_diffusers/models/vae.py +581 -0
- my_diffusers/onnx_utils.py +189 -0
- my_diffusers/optimization.py +275 -0
- my_diffusers/pipeline_utils.py +417 -0
- my_diffusers/pipelines/__init__.py +19 -0
- my_diffusers/pipelines/__pycache__/__init__.cpython-38.pyc +0 -0
- my_diffusers/pipelines/ddim/__init__.py +2 -0
- my_diffusers/pipelines/ddim/__pycache__/__init__.cpython-38.pyc +0 -0
- my_diffusers/pipelines/ddim/__pycache__/pipeline_ddim.cpython-38.pyc +0 -0
- my_diffusers/pipelines/ddim/pipeline_ddim.py +117 -0
- my_diffusers/pipelines/ddpm/__init__.py +2 -0
- my_diffusers/pipelines/ddpm/__pycache__/__init__.cpython-38.pyc +0 -0
- my_diffusers/pipelines/ddpm/__pycache__/pipeline_ddpm.cpython-38.pyc +0 -0
- my_diffusers/pipelines/ddpm/pipeline_ddpm.py +106 -0
- my_diffusers/pipelines/latent_diffusion/__init__.py +6 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
hf_auth
|
app.py
CHANGED
@@ -1,7 +1,33 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
def greet(name):
|
4 |
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from edict_functions import EDICT_editing
|
4 |
+
from PIL import Image
|
5 |
|
6 |
def greet(name):
|
7 |
return "Hello " + name + "!!"
|
8 |
|
9 |
+
|
10 |
+
def edict(x, source_text, edit_text,
|
11 |
+
edit_strength, guidance_scale,
|
12 |
+
steps=50, mix_weight=0.93, ):
|
13 |
+
x = Image.fromarray(x)
|
14 |
+
return_im = EDICT_editing(x,
|
15 |
+
source_text,
|
16 |
+
edit_text,
|
17 |
+
steps=steps,
|
18 |
+
mix_weight=mix_weight,
|
19 |
+
init_image_strength=edit_strength,
|
20 |
+
guidance_scale=guidance_scale
|
21 |
+
)[0]
|
22 |
+
return np.array(return_im)
|
23 |
+
|
24 |
+
iface = gr.Interface(fn=edict, inputs=["image",
|
25 |
+
gr.Textbox(label="Original Description"),
|
26 |
+
gr.Textbox(label="Edit Description"),
|
27 |
+
# 50, # gr.Slider(5, 50, value=20, step=1),
|
28 |
+
# 0.93, # gr.Slider(0.5, 1, value=0.7, step=0.05),
|
29 |
+
gr.Slider(0.0, 1, value=0.8, step=0.05),
|
30 |
+
gr.Slider(0, 10, value=3, step=0.5),
|
31 |
+
],
|
32 |
+
outputs="image")
|
33 |
iface.launch()
|
edict_functions.py
ADDED
@@ -0,0 +1,971 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import CLIPModel, CLIPTextModel, CLIPTokenizer
|
3 |
+
from omegaconf import OmegaConf
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import math
|
6 |
+
import imageio
|
7 |
+
from PIL import Image
|
8 |
+
import torchvision
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch
|
11 |
+
import numpy as np
|
12 |
+
from PIL import Image
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import time
|
15 |
+
import datetime
|
16 |
+
import torch
|
17 |
+
import sys
|
18 |
+
import os
|
19 |
+
from torchvision import datasets
|
20 |
+
import pickle
|
21 |
+
|
22 |
+
# StableDiffusion P2P implementation originally from https://github.com/bloc97/CrossAttentionControl
|
23 |
+
use_half_prec = True
|
24 |
+
if use_half_prec:
|
25 |
+
from my_half_diffusers import AutoencoderKL, UNet2DConditionModel
|
26 |
+
from my_half_diffusers.schedulers.scheduling_utils import SchedulerOutput
|
27 |
+
from my_half_diffusers import LMSDiscreteScheduler, PNDMScheduler, DDPMScheduler, DDIMScheduler
|
28 |
+
else:
|
29 |
+
from my_diffusers import AutoencoderKL, UNet2DConditionModel
|
30 |
+
from my_diffusers.schedulers.scheduling_utils import SchedulerOutput
|
31 |
+
from my_diffusers import LMSDiscreteScheduler, PNDMScheduler, DDPMScheduler, DDIMScheduler
|
32 |
+
torch_dtype = torch.float16 if use_half_prec else torch.float64
|
33 |
+
np_dtype = np.float16 if use_half_prec else np.float64
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
import random
|
38 |
+
from tqdm.auto import tqdm
|
39 |
+
from torch import autocast
|
40 |
+
from difflib import SequenceMatcher
|
41 |
+
|
42 |
+
# Build our CLIP model
|
43 |
+
model_path_clip = "openai/clip-vit-large-patch14"
|
44 |
+
clip_tokenizer = CLIPTokenizer.from_pretrained(model_path_clip)
|
45 |
+
clip_model = CLIPModel.from_pretrained(model_path_clip, torch_dtype=torch_dtype)
|
46 |
+
clip = clip_model.text_model
|
47 |
+
|
48 |
+
|
49 |
+
# Getting our HF Auth token
|
50 |
+
auth_token = os.environ.get('hf_auth')
|
51 |
+
if auth_token is None:
|
52 |
+
with open('hf_auth', 'r') as f:
|
53 |
+
auth_token = f.readlines()[0].strip()
|
54 |
+
model_path_diffusion = "CompVis/stable-diffusion-v1-4"
|
55 |
+
# Build our SD model
|
56 |
+
unet = UNet2DConditionModel.from_pretrained(model_path_diffusion, subfolder="unet", use_auth_token=auth_token, revision="fp16", torch_dtype=torch_dtype)
|
57 |
+
vae = AutoencoderKL.from_pretrained(model_path_diffusion, subfolder="vae", use_auth_token=auth_token, revision="fp16", torch_dtype=torch_dtype)
|
58 |
+
|
59 |
+
# Push to devices w/ double precision
|
60 |
+
device = 'cuda'
|
61 |
+
if use_half_prec:
|
62 |
+
unet.to(device)
|
63 |
+
vae.to(device)
|
64 |
+
clip.to(device)
|
65 |
+
else:
|
66 |
+
unet.double().to(device)
|
67 |
+
vae.double().to(device)
|
68 |
+
clip.double().to(device)
|
69 |
+
print("Loaded all models")
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
def EDICT_editing(im_path,
|
75 |
+
base_prompt,
|
76 |
+
edit_prompt,
|
77 |
+
use_p2p=False,
|
78 |
+
steps=50,
|
79 |
+
mix_weight=0.93,
|
80 |
+
init_image_strength=0.8,
|
81 |
+
guidance_scale=3,
|
82 |
+
run_baseline=False,
|
83 |
+
width=512, height=512):
|
84 |
+
"""
|
85 |
+
Main call of our research, performs editing with either EDICT or DDIM
|
86 |
+
|
87 |
+
Args:
|
88 |
+
im_path: path to image to run on
|
89 |
+
base_prompt: conditional prompt to deterministically noise with
|
90 |
+
edit_prompt: desired text conditoining
|
91 |
+
steps: ddim steps
|
92 |
+
mix_weight: Weight of mixing layers.
|
93 |
+
Higher means more consistent generations but divergence in inversion
|
94 |
+
Lower means opposite
|
95 |
+
This is fairly tuned and can get good results
|
96 |
+
init_image_strength: Editing strength. Higher = more dramatic edit.
|
97 |
+
Typically [0.6, 0.9] is good range.
|
98 |
+
Definitely tunable per-image/maybe best results are at a different value
|
99 |
+
guidance_scale: classifier-free guidance scale
|
100 |
+
3 I've found is the best for both our method and basic DDIM inversion
|
101 |
+
Higher can result in more distorted results
|
102 |
+
run_baseline:
|
103 |
+
VERY IMPORTANT
|
104 |
+
True is EDICT, False is DDIM
|
105 |
+
Output:
|
106 |
+
PAIR of Images (tuple)
|
107 |
+
If run_baseline=True then [0] will be edit and [1] will be original
|
108 |
+
If run_baseline=False then they will be two nearly identical edited versions
|
109 |
+
"""
|
110 |
+
# Resize/center crop to 512x512 (Can do higher res. if desired)
|
111 |
+
if isinstance(im_path, str):
|
112 |
+
orig_im = load_im_into_format_from_path(im_path)
|
113 |
+
elif Image.isImageType(im_path):
|
114 |
+
width, height = im_path.size
|
115 |
+
|
116 |
+
|
117 |
+
# add max dim for sake of memory
|
118 |
+
max_dim = max(width, height)
|
119 |
+
if max_dim > 1024:
|
120 |
+
factor = 1024 / max_dim
|
121 |
+
width *= factor
|
122 |
+
height *= factor
|
123 |
+
width = int(width)
|
124 |
+
height = int(height)
|
125 |
+
im_path = im_path.resize((width, height))
|
126 |
+
|
127 |
+
min_dim = min(width, height)
|
128 |
+
if min_dim < 512:
|
129 |
+
factor = 512 / min_dim
|
130 |
+
width *= factor
|
131 |
+
height *= factor
|
132 |
+
width = int(width)
|
133 |
+
height = int(height)
|
134 |
+
im_path = im_path.resize((width, height))
|
135 |
+
|
136 |
+
width = width - (width%64)
|
137 |
+
height = height - (height%64)
|
138 |
+
|
139 |
+
orig_im = im_path # general_crop(im_path, width, height)
|
140 |
+
else:
|
141 |
+
orig_im = im_path
|
142 |
+
|
143 |
+
# compute latent pair (second one will be original latent if run_baseline=True)
|
144 |
+
latents = coupled_stablediffusion(base_prompt,
|
145 |
+
reverse=True,
|
146 |
+
init_image=orig_im,
|
147 |
+
init_image_strength=init_image_strength,
|
148 |
+
steps=steps,
|
149 |
+
mix_weight=mix_weight,
|
150 |
+
guidance_scale=guidance_scale,
|
151 |
+
run_baseline=run_baseline,
|
152 |
+
width=width, height=height)
|
153 |
+
# Denoise intermediate state with new conditioning
|
154 |
+
gen = coupled_stablediffusion(edit_prompt if (not use_p2p) else base_prompt,
|
155 |
+
None if (not use_p2p) else edit_prompt,
|
156 |
+
fixed_starting_latent=latents,
|
157 |
+
init_image_strength=init_image_strength,
|
158 |
+
steps=steps,
|
159 |
+
mix_weight=mix_weight,
|
160 |
+
guidance_scale=guidance_scale,
|
161 |
+
run_baseline=run_baseline,
|
162 |
+
width=width, height=height)
|
163 |
+
|
164 |
+
return gen
|
165 |
+
|
166 |
+
|
167 |
+
def img2img_editing(im_path,
|
168 |
+
edit_prompt,
|
169 |
+
steps=50,
|
170 |
+
init_image_strength=0.7,
|
171 |
+
guidance_scale=3):
|
172 |
+
"""
|
173 |
+
Basic SDEdit/img2img, given an image add some noise and denoise with prompt
|
174 |
+
"""
|
175 |
+
orig_im = load_im_into_format_from_path(im_path)
|
176 |
+
|
177 |
+
return baseline_stablediffusion(edit_prompt,
|
178 |
+
init_image_strength=init_image_strength,
|
179 |
+
steps=steps,
|
180 |
+
init_image=orig_im,
|
181 |
+
guidance_scale=guidance_scale)
|
182 |
+
|
183 |
+
|
184 |
+
def center_crop(im):
|
185 |
+
width, height = im.size # Get dimensions
|
186 |
+
min_dim = min(width, height)
|
187 |
+
left = (width - min_dim)/2
|
188 |
+
top = (height - min_dim)/2
|
189 |
+
right = (width + min_dim)/2
|
190 |
+
bottom = (height + min_dim)/2
|
191 |
+
|
192 |
+
# Crop the center of the image
|
193 |
+
im = im.crop((left, top, right, bottom))
|
194 |
+
return im
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
def general_crop(im, target_w, target_h):
|
199 |
+
width, height = im.size # Get dimensions
|
200 |
+
min_dim = min(width, height)
|
201 |
+
left = target_w / 2 # (width - min_dim)/2
|
202 |
+
top = target_h / 2 # (height - min_dim)/2
|
203 |
+
right = width - (target_w / 2) # (width + min_dim)/2
|
204 |
+
bottom = height - (target_h / 2) # (height + min_dim)/2
|
205 |
+
|
206 |
+
# Crop the center of the image
|
207 |
+
im = im.crop((left, top, right, bottom))
|
208 |
+
return im
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
def load_im_into_format_from_path(im_path):
|
213 |
+
return center_crop(Image.open(im_path)).resize((512,512))
|
214 |
+
|
215 |
+
|
216 |
+
#### P2P STUFF ####
|
217 |
+
def init_attention_weights(weight_tuples):
|
218 |
+
tokens_length = clip_tokenizer.model_max_length
|
219 |
+
weights = torch.ones(tokens_length)
|
220 |
+
|
221 |
+
for i, w in weight_tuples:
|
222 |
+
if i < tokens_length and i >= 0:
|
223 |
+
weights[i] = w
|
224 |
+
|
225 |
+
|
226 |
+
for name, module in unet.named_modules():
|
227 |
+
module_name = type(module).__name__
|
228 |
+
if module_name == "CrossAttention" and "attn2" in name:
|
229 |
+
module.last_attn_slice_weights = weights.to(device)
|
230 |
+
if module_name == "CrossAttention" and "attn1" in name:
|
231 |
+
module.last_attn_slice_weights = None
|
232 |
+
|
233 |
+
|
234 |
+
def init_attention_edit(tokens, tokens_edit):
|
235 |
+
tokens_length = clip_tokenizer.model_max_length
|
236 |
+
mask = torch.zeros(tokens_length)
|
237 |
+
indices_target = torch.arange(tokens_length, dtype=torch.long)
|
238 |
+
indices = torch.zeros(tokens_length, dtype=torch.long)
|
239 |
+
|
240 |
+
tokens = tokens.input_ids.numpy()[0]
|
241 |
+
tokens_edit = tokens_edit.input_ids.numpy()[0]
|
242 |
+
|
243 |
+
for name, a0, a1, b0, b1 in SequenceMatcher(None, tokens, tokens_edit).get_opcodes():
|
244 |
+
if b0 < tokens_length:
|
245 |
+
if name == "equal" or (name == "replace" and a1-a0 == b1-b0):
|
246 |
+
mask[b0:b1] = 1
|
247 |
+
indices[b0:b1] = indices_target[a0:a1]
|
248 |
+
|
249 |
+
for name, module in unet.named_modules():
|
250 |
+
module_name = type(module).__name__
|
251 |
+
if module_name == "CrossAttention" and "attn2" in name:
|
252 |
+
module.last_attn_slice_mask = mask.to(device)
|
253 |
+
module.last_attn_slice_indices = indices.to(device)
|
254 |
+
if module_name == "CrossAttention" and "attn1" in name:
|
255 |
+
module.last_attn_slice_mask = None
|
256 |
+
module.last_attn_slice_indices = None
|
257 |
+
|
258 |
+
|
259 |
+
def init_attention_func():
|
260 |
+
def new_attention(self, query, key, value, sequence_length, dim):
|
261 |
+
batch_size_attention = query.shape[0]
|
262 |
+
hidden_states = torch.zeros(
|
263 |
+
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
|
264 |
+
)
|
265 |
+
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
|
266 |
+
for i in range(hidden_states.shape[0] // slice_size):
|
267 |
+
start_idx = i * slice_size
|
268 |
+
end_idx = (i + 1) * slice_size
|
269 |
+
attn_slice = (
|
270 |
+
torch.einsum("b i d, b j d -> b i j", query[start_idx:end_idx], key[start_idx:end_idx]) * self.scale
|
271 |
+
)
|
272 |
+
attn_slice = attn_slice.softmax(dim=-1)
|
273 |
+
|
274 |
+
if self.use_last_attn_slice:
|
275 |
+
if self.last_attn_slice_mask is not None:
|
276 |
+
new_attn_slice = torch.index_select(self.last_attn_slice, -1, self.last_attn_slice_indices)
|
277 |
+
attn_slice = attn_slice * (1 - self.last_attn_slice_mask) + new_attn_slice * self.last_attn_slice_mask
|
278 |
+
else:
|
279 |
+
attn_slice = self.last_attn_slice
|
280 |
+
|
281 |
+
self.use_last_attn_slice = False
|
282 |
+
|
283 |
+
if self.save_last_attn_slice:
|
284 |
+
self.last_attn_slice = attn_slice
|
285 |
+
self.save_last_attn_slice = False
|
286 |
+
|
287 |
+
if self.use_last_attn_weights and self.last_attn_slice_weights is not None:
|
288 |
+
attn_slice = attn_slice * self.last_attn_slice_weights
|
289 |
+
self.use_last_attn_weights = False
|
290 |
+
|
291 |
+
attn_slice = torch.einsum("b i j, b j d -> b i d", attn_slice, value[start_idx:end_idx])
|
292 |
+
|
293 |
+
hidden_states[start_idx:end_idx] = attn_slice
|
294 |
+
|
295 |
+
# reshape hidden_states
|
296 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
297 |
+
return hidden_states
|
298 |
+
|
299 |
+
for name, module in unet.named_modules():
|
300 |
+
module_name = type(module).__name__
|
301 |
+
if module_name == "CrossAttention":
|
302 |
+
module.last_attn_slice = None
|
303 |
+
module.use_last_attn_slice = False
|
304 |
+
module.use_last_attn_weights = False
|
305 |
+
module.save_last_attn_slice = False
|
306 |
+
module._attention = new_attention.__get__(module, type(module))
|
307 |
+
|
308 |
+
def use_last_tokens_attention(use=True):
|
309 |
+
for name, module in unet.named_modules():
|
310 |
+
module_name = type(module).__name__
|
311 |
+
if module_name == "CrossAttention" and "attn2" in name:
|
312 |
+
module.use_last_attn_slice = use
|
313 |
+
|
314 |
+
def use_last_tokens_attention_weights(use=True):
|
315 |
+
for name, module in unet.named_modules():
|
316 |
+
module_name = type(module).__name__
|
317 |
+
if module_name == "CrossAttention" and "attn2" in name:
|
318 |
+
module.use_last_attn_weights = use
|
319 |
+
|
320 |
+
def use_last_self_attention(use=True):
|
321 |
+
for name, module in unet.named_modules():
|
322 |
+
module_name = type(module).__name__
|
323 |
+
if module_name == "CrossAttention" and "attn1" in name:
|
324 |
+
module.use_last_attn_slice = use
|
325 |
+
|
326 |
+
def save_last_tokens_attention(save=True):
|
327 |
+
for name, module in unet.named_modules():
|
328 |
+
module_name = type(module).__name__
|
329 |
+
if module_name == "CrossAttention" and "attn2" in name:
|
330 |
+
module.save_last_attn_slice = save
|
331 |
+
|
332 |
+
def save_last_self_attention(save=True):
|
333 |
+
for name, module in unet.named_modules():
|
334 |
+
module_name = type(module).__name__
|
335 |
+
if module_name == "CrossAttention" and "attn1" in name:
|
336 |
+
module.save_last_attn_slice = save
|
337 |
+
####################################
|
338 |
+
|
339 |
+
|
340 |
+
##### BASELINE ALGORITHM, ONLY USED NOW FOR SDEDIT ####3
|
341 |
+
|
342 |
+
@torch.no_grad()
|
343 |
+
def baseline_stablediffusion(prompt="",
|
344 |
+
prompt_edit=None,
|
345 |
+
null_prompt='',
|
346 |
+
prompt_edit_token_weights=[],
|
347 |
+
prompt_edit_tokens_start=0.0,
|
348 |
+
prompt_edit_tokens_end=1.0,
|
349 |
+
prompt_edit_spatial_start=0.0,
|
350 |
+
prompt_edit_spatial_end=1.0,
|
351 |
+
clip_start=0.0,
|
352 |
+
clip_end=1.0,
|
353 |
+
guidance_scale=7,
|
354 |
+
steps=50,
|
355 |
+
seed=1,
|
356 |
+
width=512, height=512,
|
357 |
+
init_image=None, init_image_strength=0.5,
|
358 |
+
fixed_starting_latent = None,
|
359 |
+
prev_image= None,
|
360 |
+
grid=None,
|
361 |
+
clip_guidance=None,
|
362 |
+
clip_guidance_scale=1,
|
363 |
+
num_cutouts=4,
|
364 |
+
cut_power=1,
|
365 |
+
scheduler_str='lms',
|
366 |
+
return_latent=False,
|
367 |
+
one_pass=False,
|
368 |
+
normalize_noise_pred=False):
|
369 |
+
width = width - width % 64
|
370 |
+
height = height - height % 64
|
371 |
+
|
372 |
+
#If seed is None, randomly select seed from 0 to 2^32-1
|
373 |
+
if seed is None: seed = random.randrange(2**32 - 1)
|
374 |
+
generator = torch.cuda.manual_seed(seed)
|
375 |
+
|
376 |
+
#Set inference timesteps to scheduler
|
377 |
+
scheduler_dict = {'ddim':DDIMScheduler,
|
378 |
+
'lms':LMSDiscreteScheduler,
|
379 |
+
'pndm':PNDMScheduler,
|
380 |
+
'ddpm':DDPMScheduler}
|
381 |
+
scheduler_call = scheduler_dict[scheduler_str]
|
382 |
+
if scheduler_str == 'ddim':
|
383 |
+
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012,
|
384 |
+
beta_schedule="scaled_linear",
|
385 |
+
clip_sample=False, set_alpha_to_one=False)
|
386 |
+
else:
|
387 |
+
scheduler = scheduler_call(beta_schedule="scaled_linear",
|
388 |
+
num_train_timesteps=1000)
|
389 |
+
|
390 |
+
scheduler.set_timesteps(steps)
|
391 |
+
if prev_image is not None:
|
392 |
+
prev_scheduler = LMSDiscreteScheduler(beta_start=0.00085,
|
393 |
+
beta_end=0.012,
|
394 |
+
beta_schedule="scaled_linear",
|
395 |
+
num_train_timesteps=1000)
|
396 |
+
prev_scheduler.set_timesteps(steps)
|
397 |
+
|
398 |
+
#Preprocess image if it exists (img2img)
|
399 |
+
if init_image is not None:
|
400 |
+
init_image = init_image.resize((width, height), resample=Image.Resampling.LANCZOS)
|
401 |
+
init_image = np.array(init_image).astype(np_dtype) / 255.0 * 2.0 - 1.0
|
402 |
+
init_image = torch.from_numpy(init_image[np.newaxis, ...].transpose(0, 3, 1, 2))
|
403 |
+
|
404 |
+
#If there is alpha channel, composite alpha for white, as the diffusion model does not support alpha channel
|
405 |
+
if init_image.shape[1] > 3:
|
406 |
+
init_image = init_image[:, :3] * init_image[:, 3:] + (1 - init_image[:, 3:])
|
407 |
+
|
408 |
+
#Move image to GPU
|
409 |
+
init_image = init_image.to(device)
|
410 |
+
|
411 |
+
#Encode image
|
412 |
+
with autocast(device):
|
413 |
+
init_latent = vae.encode(init_image).latent_dist.sample(generator=generator) * 0.18215
|
414 |
+
|
415 |
+
t_start = steps - int(steps * init_image_strength)
|
416 |
+
|
417 |
+
else:
|
418 |
+
init_latent = torch.zeros((1, unet.in_channels, height // 8, width // 8), device=device)
|
419 |
+
t_start = 0
|
420 |
+
|
421 |
+
#Generate random normal noise
|
422 |
+
if fixed_starting_latent is None:
|
423 |
+
noise = torch.randn(init_latent.shape, generator=generator, device=device, dtype=unet.dtype)
|
424 |
+
if scheduler_str == 'ddim':
|
425 |
+
if init_image is not None:
|
426 |
+
raise notImplementedError
|
427 |
+
latent = scheduler.add_noise(init_latent, noise,
|
428 |
+
1000 - int(1000 * init_image_strength)).to(device)
|
429 |
+
else:
|
430 |
+
latent = noise
|
431 |
+
else:
|
432 |
+
latent = scheduler.add_noise(init_latent, noise,
|
433 |
+
t_start).to(device)
|
434 |
+
else:
|
435 |
+
latent = fixed_starting_latent
|
436 |
+
t_start = steps - int(steps * init_image_strength)
|
437 |
+
|
438 |
+
if prev_image is not None:
|
439 |
+
#Resize and prev_image for numpy b h w c -> torch b c h w
|
440 |
+
prev_image = prev_image.resize((width, height), resample=Image.Resampling.LANCZOS)
|
441 |
+
prev_image = np.array(prev_image).astype(np_dtype) / 255.0 * 2.0 - 1.0
|
442 |
+
prev_image = torch.from_numpy(prev_image[np.newaxis, ...].transpose(0, 3, 1, 2))
|
443 |
+
|
444 |
+
#If there is alpha channel, composite alpha for white, as the diffusion model does not support alpha channel
|
445 |
+
if prev_image.shape[1] > 3:
|
446 |
+
prev_image = prev_image[:, :3] * prev_image[:, 3:] + (1 - prev_image[:, 3:])
|
447 |
+
|
448 |
+
#Move image to GPU
|
449 |
+
prev_image = prev_image.to(device)
|
450 |
+
|
451 |
+
#Encode image
|
452 |
+
with autocast(device):
|
453 |
+
prev_init_latent = vae.encode(prev_image).latent_dist.sample(generator=generator) * 0.18215
|
454 |
+
|
455 |
+
t_start = steps - int(steps * init_image_strength)
|
456 |
+
|
457 |
+
prev_latent = prev_scheduler.add_noise(prev_init_latent, noise, t_start).to(device)
|
458 |
+
else:
|
459 |
+
prev_latent = None
|
460 |
+
|
461 |
+
|
462 |
+
#Process clip
|
463 |
+
with autocast(device):
|
464 |
+
tokens_unconditional = clip_tokenizer(null_prompt, padding="max_length", max_length=clip_tokenizer.model_max_length, truncation=True, return_tensors="pt", return_overflowing_tokens=True)
|
465 |
+
embedding_unconditional = clip(tokens_unconditional.input_ids.to(device)).last_hidden_state
|
466 |
+
|
467 |
+
tokens_conditional = clip_tokenizer(prompt, padding="max_length", max_length=clip_tokenizer.model_max_length, truncation=True, return_tensors="pt", return_overflowing_tokens=True)
|
468 |
+
embedding_conditional = clip(tokens_conditional.input_ids.to(device)).last_hidden_state
|
469 |
+
|
470 |
+
#Process prompt editing
|
471 |
+
assert not ((prompt_edit is not None) and (prev_image is not None))
|
472 |
+
if prompt_edit is not None:
|
473 |
+
tokens_conditional_edit = clip_tokenizer(prompt_edit, padding="max_length", max_length=clip_tokenizer.model_max_length, truncation=True, return_tensors="pt", return_overflowing_tokens=True)
|
474 |
+
embedding_conditional_edit = clip(tokens_conditional_edit.input_ids.to(device)).last_hidden_state
|
475 |
+
init_attention_edit(tokens_conditional, tokens_conditional_edit)
|
476 |
+
elif prev_image is not None:
|
477 |
+
init_attention_edit(tokens_conditional, tokens_conditional)
|
478 |
+
|
479 |
+
|
480 |
+
init_attention_func()
|
481 |
+
init_attention_weights(prompt_edit_token_weights)
|
482 |
+
|
483 |
+
timesteps = scheduler.timesteps[t_start:]
|
484 |
+
# print(timesteps)
|
485 |
+
|
486 |
+
assert isinstance(guidance_scale, int)
|
487 |
+
num_cycles = 1 # guidance_scale + 1
|
488 |
+
|
489 |
+
last_noise_preds = None
|
490 |
+
for i, t in tqdm(enumerate(timesteps), total=len(timesteps)):
|
491 |
+
t_index = t_start + i
|
492 |
+
|
493 |
+
latent_model_input = latent
|
494 |
+
if scheduler_str=='lms':
|
495 |
+
sigma = scheduler.sigmas[t_index] # last is first and first is last
|
496 |
+
latent_model_input = (latent_model_input / ((sigma**2 + 1) ** 0.5)).to(unet.dtype)
|
497 |
+
else:
|
498 |
+
assert scheduler_str in ['ddim', 'pndm', 'ddpm']
|
499 |
+
|
500 |
+
#Predict the unconditional noise residual
|
501 |
+
|
502 |
+
if len(t.shape) == 0:
|
503 |
+
t = t[None].to(unet.device)
|
504 |
+
noise_pred_uncond = unet(latent_model_input, t, encoder_hidden_states=embedding_unconditional,
|
505 |
+
).sample
|
506 |
+
|
507 |
+
if prev_latent is not None:
|
508 |
+
prev_latent_model_input = prev_latent
|
509 |
+
prev_latent_model_input = (prev_latent_model_input / ((sigma**2 + 1) ** 0.5)).to(unet.dtype)
|
510 |
+
prev_noise_pred_uncond = unet(prev_latent_model_input, t,
|
511 |
+
encoder_hidden_states=embedding_unconditional,
|
512 |
+
).sample
|
513 |
+
# noise_pred_uncond = unet(latent_model_input, t,
|
514 |
+
# encoder_hidden_states=embedding_unconditional)['sample']
|
515 |
+
|
516 |
+
#Prepare the Cross-Attention layers
|
517 |
+
if prompt_edit is not None or prev_latent is not None:
|
518 |
+
save_last_tokens_attention()
|
519 |
+
save_last_self_attention()
|
520 |
+
else:
|
521 |
+
#Use weights on non-edited prompt when edit is None
|
522 |
+
use_last_tokens_attention_weights()
|
523 |
+
|
524 |
+
#Predict the conditional noise residual and save the cross-attention layer activations
|
525 |
+
if prev_latent is not None:
|
526 |
+
raise NotImplementedError # I totally lost track of what this is
|
527 |
+
prev_noise_pred_cond = unet(prev_latent_model_input, t, encoder_hidden_states=embedding_conditional,
|
528 |
+
).sample
|
529 |
+
else:
|
530 |
+
noise_pred_cond = unet(latent_model_input, t, encoder_hidden_states=embedding_conditional,
|
531 |
+
).sample
|
532 |
+
|
533 |
+
#Edit the Cross-Attention layer activations
|
534 |
+
t_scale = t / scheduler.num_train_timesteps
|
535 |
+
if prompt_edit is not None or prev_latent is not None:
|
536 |
+
if t_scale >= prompt_edit_tokens_start and t_scale <= prompt_edit_tokens_end:
|
537 |
+
use_last_tokens_attention()
|
538 |
+
if t_scale >= prompt_edit_spatial_start and t_scale <= prompt_edit_spatial_end:
|
539 |
+
use_last_self_attention()
|
540 |
+
|
541 |
+
#Use weights on edited prompt
|
542 |
+
use_last_tokens_attention_weights()
|
543 |
+
|
544 |
+
#Predict the edited conditional noise residual using the cross-attention masks
|
545 |
+
if prompt_edit is not None:
|
546 |
+
noise_pred_cond = unet(latent_model_input, t,
|
547 |
+
encoder_hidden_states=embedding_conditional_edit).sample
|
548 |
+
|
549 |
+
#Perform guidance
|
550 |
+
# if i%(num_cycles)==0: # cycle_i+1==num_cycles:
|
551 |
+
"""
|
552 |
+
if cycle_i+1==num_cycles:
|
553 |
+
noise_pred = noise_pred_uncond
|
554 |
+
else:
|
555 |
+
noise_pred = noise_pred_cond - noise_pred_uncond
|
556 |
+
|
557 |
+
"""
|
558 |
+
if last_noise_preds is not None:
|
559 |
+
# print( (last_noise_preds[0]*noise_pred_uncond).sum(), (last_noise_preds[1]*noise_pred_cond).sum())
|
560 |
+
# print(F.cosine_similarity(last_noise_preds[0].flatten(), noise_pred_uncond.flatten(), dim=0),
|
561 |
+
# F.cosine_similarity(last_noise_preds[1].flatten(), noise_pred_cond.flatten(), dim=0))
|
562 |
+
last_grad= last_noise_preds[1] - last_noise_preds[0]
|
563 |
+
new_grad = noise_pred_cond - noise_pred_uncond
|
564 |
+
# print( F.cosine_similarity(last_grad.flatten(), new_grad.flatten(), dim=0))
|
565 |
+
last_noise_preds = (noise_pred_uncond, noise_pred_cond)
|
566 |
+
|
567 |
+
use_cond_guidance = True
|
568 |
+
if use_cond_guidance:
|
569 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
570 |
+
else:
|
571 |
+
noise_pred = noise_pred_uncond
|
572 |
+
if clip_guidance is not None and t_scale >= clip_start and t_scale <= clip_end:
|
573 |
+
noise_pred, latent = new_cond_fn(latent, t, t_index,
|
574 |
+
embedding_conditional, noise_pred,clip_guidance,
|
575 |
+
clip_guidance_scale,
|
576 |
+
num_cutouts,
|
577 |
+
scheduler, unet,use_cutouts=True,
|
578 |
+
cut_power=cut_power)
|
579 |
+
if normalize_noise_pred:
|
580 |
+
noise_pred = noise_pred * noise_pred_uncond.norm() / noise_pred.norm()
|
581 |
+
if scheduler_str == 'ddim':
|
582 |
+
latent = forward_step(scheduler, noise_pred,
|
583 |
+
t,
|
584 |
+
latent).prev_sample
|
585 |
+
else:
|
586 |
+
latent = scheduler.step(noise_pred,
|
587 |
+
t_index,
|
588 |
+
latent).prev_sample
|
589 |
+
|
590 |
+
if prev_latent is not None:
|
591 |
+
prev_noise_pred = prev_noise_pred_uncond + guidance_scale * (prev_noise_pred_cond - prev_noise_pred_uncond)
|
592 |
+
prev_latent = prev_scheduler.step(prev_noise_pred, t_index, prev_latent).prev_sample
|
593 |
+
if one_pass: break
|
594 |
+
|
595 |
+
#scale and decode the image latents with vae
|
596 |
+
if return_latent: return latent
|
597 |
+
latent = latent / 0.18215
|
598 |
+
image = vae.decode(latent.to(vae.dtype)).sample
|
599 |
+
|
600 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
601 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
602 |
+
image = (image[0] * 255).round().astype("uint8")
|
603 |
+
return Image.fromarray(image)
|
604 |
+
####################################
|
605 |
+
|
606 |
+
#### HELPER FUNCTIONS FOR OUR METHOD #####
|
607 |
+
|
608 |
+
def get_alpha_and_beta(t, scheduler):
|
609 |
+
# want to run this for both current and previous timnestep
|
610 |
+
if t.dtype==torch.long:
|
611 |
+
alpha = scheduler.alphas_cumprod[t]
|
612 |
+
return alpha, 1-alpha
|
613 |
+
|
614 |
+
if t<0:
|
615 |
+
return scheduler.final_alpha_cumprod, 1 - scheduler.final_alpha_cumprod
|
616 |
+
|
617 |
+
|
618 |
+
low = t.floor().long()
|
619 |
+
high = t.ceil().long()
|
620 |
+
rem = t - low
|
621 |
+
|
622 |
+
low_alpha = scheduler.alphas_cumprod[low]
|
623 |
+
high_alpha = scheduler.alphas_cumprod[high]
|
624 |
+
interpolated_alpha = low_alpha * rem + high_alpha * (1-rem)
|
625 |
+
interpolated_beta = 1 - interpolated_alpha
|
626 |
+
return interpolated_alpha, interpolated_beta
|
627 |
+
|
628 |
+
|
629 |
+
# A DDIM forward step function
|
630 |
+
def forward_step(
|
631 |
+
self,
|
632 |
+
model_output,
|
633 |
+
timestep: int,
|
634 |
+
sample,
|
635 |
+
eta: float = 0.0,
|
636 |
+
use_clipped_model_output: bool = False,
|
637 |
+
generator=None,
|
638 |
+
return_dict: bool = True,
|
639 |
+
use_double=False,
|
640 |
+
) :
|
641 |
+
if self.num_inference_steps is None:
|
642 |
+
raise ValueError(
|
643 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
644 |
+
)
|
645 |
+
|
646 |
+
prev_timestep = timestep - self.config.num_train_timesteps / self.num_inference_steps
|
647 |
+
|
648 |
+
if timestep > self.timesteps.max():
|
649 |
+
raise NotImplementedError("Need to double check what the overflow is")
|
650 |
+
|
651 |
+
alpha_prod_t, beta_prod_t = get_alpha_and_beta(timestep, self)
|
652 |
+
alpha_prod_t_prev, _ = get_alpha_and_beta(prev_timestep, self)
|
653 |
+
|
654 |
+
|
655 |
+
alpha_quotient = ((alpha_prod_t / alpha_prod_t_prev)**0.5)
|
656 |
+
first_term = (1./alpha_quotient) * sample
|
657 |
+
second_term = (1./alpha_quotient) * (beta_prod_t ** 0.5) * model_output
|
658 |
+
third_term = ((1 - alpha_prod_t_prev)**0.5) * model_output
|
659 |
+
return first_term - second_term + third_term
|
660 |
+
|
661 |
+
# A DDIM reverse step function, the inverse of above
|
662 |
+
def reverse_step(
|
663 |
+
self,
|
664 |
+
model_output,
|
665 |
+
timestep: int,
|
666 |
+
sample,
|
667 |
+
eta: float = 0.0,
|
668 |
+
use_clipped_model_output: bool = False,
|
669 |
+
generator=None,
|
670 |
+
return_dict: bool = True,
|
671 |
+
use_double=False,
|
672 |
+
) :
|
673 |
+
if self.num_inference_steps is None:
|
674 |
+
raise ValueError(
|
675 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
676 |
+
)
|
677 |
+
|
678 |
+
prev_timestep = timestep - self.config.num_train_timesteps / self.num_inference_steps
|
679 |
+
|
680 |
+
if timestep > self.timesteps.max():
|
681 |
+
raise NotImplementedError
|
682 |
+
else:
|
683 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
684 |
+
|
685 |
+
alpha_prod_t, beta_prod_t = get_alpha_and_beta(timestep, self)
|
686 |
+
alpha_prod_t_prev, _ = get_alpha_and_beta(prev_timestep, self)
|
687 |
+
|
688 |
+
alpha_quotient = ((alpha_prod_t / alpha_prod_t_prev)**0.5)
|
689 |
+
|
690 |
+
first_term = alpha_quotient * sample
|
691 |
+
second_term = ((beta_prod_t)**0.5) * model_output
|
692 |
+
third_term = alpha_quotient * ((1 - alpha_prod_t_prev)**0.5) * model_output
|
693 |
+
return first_term + second_term - third_term
|
694 |
+
|
695 |
+
|
696 |
+
|
697 |
+
|
698 |
+
@torch.no_grad()
|
699 |
+
def latent_to_image(latent):
|
700 |
+
image = vae.decode(latent.to(vae.dtype)/0.18215).sample
|
701 |
+
image = prep_image_for_return(image)
|
702 |
+
return image
|
703 |
+
|
704 |
+
def prep_image_for_return(image):
|
705 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
706 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
707 |
+
image = (image[0] * 255).round().astype("uint8")
|
708 |
+
image = Image.fromarray(image)
|
709 |
+
return image
|
710 |
+
|
711 |
+
#############################
|
712 |
+
|
713 |
+
##### MAIN EDICT FUNCTION #######
|
714 |
+
# Use EDICT_editing to perform calls
|
715 |
+
|
716 |
+
@torch.no_grad()
|
717 |
+
def coupled_stablediffusion(prompt="",
|
718 |
+
prompt_edit=None,
|
719 |
+
null_prompt='',
|
720 |
+
prompt_edit_token_weights=[],
|
721 |
+
prompt_edit_tokens_start=0.0,
|
722 |
+
prompt_edit_tokens_end=1.0,
|
723 |
+
prompt_edit_spatial_start=0.0,
|
724 |
+
prompt_edit_spatial_end=1.0,
|
725 |
+
guidance_scale=7.0, steps=50,
|
726 |
+
seed=1, width=512, height=512,
|
727 |
+
init_image=None, init_image_strength=1.0,
|
728 |
+
run_baseline=False,
|
729 |
+
use_lms=False,
|
730 |
+
leapfrog_steps=True,
|
731 |
+
reverse=False,
|
732 |
+
return_latents=False,
|
733 |
+
fixed_starting_latent=None,
|
734 |
+
beta_schedule='scaled_linear',
|
735 |
+
mix_weight=0.93):
|
736 |
+
#If seed is None, randomly select seed from 0 to 2^32-1
|
737 |
+
if seed is None: seed = random.randrange(2**32 - 1)
|
738 |
+
generator = torch.cuda.manual_seed(seed)
|
739 |
+
|
740 |
+
def image_to_latent(im):
|
741 |
+
if isinstance(im, torch.Tensor):
|
742 |
+
# assume it's the latent
|
743 |
+
# used to avoid clipping new generation before inversion
|
744 |
+
init_latent = im.to(device)
|
745 |
+
else:
|
746 |
+
#Resize and transpose for numpy b h w c -> torch b c h w
|
747 |
+
im = im.resize((width, height), resample=Image.Resampling.LANCZOS)
|
748 |
+
im = np.array(im).astype(np_dtype) / 255.0 * 2.0 - 1.0
|
749 |
+
# check if black and white
|
750 |
+
if len(im.shape) < 3:
|
751 |
+
im = np.stack([im for _ in range(3)], axis=2) # putting at end b/c channels
|
752 |
+
|
753 |
+
im = torch.from_numpy(im[np.newaxis, ...].transpose(0, 3, 1, 2))
|
754 |
+
|
755 |
+
#If there is alpha channel, composite alpha for white, as the diffusion model does not support alpha channel
|
756 |
+
if im.shape[1] > 3:
|
757 |
+
im = im[:, :3] * im[:, 3:] + (1 - im[:, 3:])
|
758 |
+
|
759 |
+
#Move image to GPU
|
760 |
+
im = im.to(device)
|
761 |
+
#Encode image
|
762 |
+
if use_half_prec:
|
763 |
+
init_latent = vae.encode(im).latent_dist.sample(generator=generator) * 0.18215
|
764 |
+
else:
|
765 |
+
with autocast(device):
|
766 |
+
init_latent = vae.encode(im).latent_dist.sample(generator=generator) * 0.18215
|
767 |
+
return init_latent
|
768 |
+
assert not use_lms, "Can't invert LMS the same as DDIM"
|
769 |
+
if run_baseline: leapfrog_steps=False
|
770 |
+
#Change size to multiple of 64 to prevent size mismatches inside model
|
771 |
+
width = width - width % 64
|
772 |
+
height = height - height % 64
|
773 |
+
|
774 |
+
|
775 |
+
#Preprocess image if it exists (img2img)
|
776 |
+
if init_image is not None:
|
777 |
+
assert reverse # want to be performing deterministic noising
|
778 |
+
# can take either pair (output of generative process) or single image
|
779 |
+
if isinstance(init_image, list):
|
780 |
+
if isinstance(init_image[0], torch.Tensor):
|
781 |
+
init_latent = [t.clone() for t in init_image]
|
782 |
+
else:
|
783 |
+
init_latent = [image_to_latent(im) for im in init_image]
|
784 |
+
else:
|
785 |
+
init_latent = image_to_latent(init_image)
|
786 |
+
# this is t_start for forward, t_end for reverse
|
787 |
+
t_limit = steps - int(steps * init_image_strength)
|
788 |
+
else:
|
789 |
+
assert not reverse, 'Need image to reverse from'
|
790 |
+
init_latent = torch.zeros((1, unet.in_channels, height // 8, width // 8), device=device)
|
791 |
+
t_limit = 0
|
792 |
+
|
793 |
+
if reverse:
|
794 |
+
latent = init_latent
|
795 |
+
else:
|
796 |
+
#Generate random normal noise
|
797 |
+
noise = torch.randn(init_latent.shape,
|
798 |
+
generator=generator,
|
799 |
+
device=device,
|
800 |
+
dtype=torch_dtype)
|
801 |
+
if fixed_starting_latent is None:
|
802 |
+
latent = noise
|
803 |
+
else:
|
804 |
+
if isinstance(fixed_starting_latent, list):
|
805 |
+
latent = [l.clone() for l in fixed_starting_latent]
|
806 |
+
else:
|
807 |
+
latent = fixed_starting_latent.clone()
|
808 |
+
t_limit = steps - int(steps * init_image_strength)
|
809 |
+
if isinstance(latent, list): # initializing from pair of images
|
810 |
+
latent_pair = latent
|
811 |
+
else: # initializing from noise
|
812 |
+
latent_pair = [latent.clone(), latent.clone()]
|
813 |
+
|
814 |
+
|
815 |
+
if steps==0:
|
816 |
+
if init_image is not None:
|
817 |
+
return image_to_latent(init_image)
|
818 |
+
else:
|
819 |
+
image = vae.decode(latent.to(vae.dtype) / 0.18215).sample
|
820 |
+
return prep_image_for_return(image)
|
821 |
+
|
822 |
+
#Set inference timesteps to scheduler
|
823 |
+
schedulers = []
|
824 |
+
for i in range(2):
|
825 |
+
# num_raw_timesteps = max(1000, steps)
|
826 |
+
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012,
|
827 |
+
beta_schedule=beta_schedule,
|
828 |
+
num_train_timesteps=1000,
|
829 |
+
clip_sample=False,
|
830 |
+
set_alpha_to_one=False)
|
831 |
+
scheduler.set_timesteps(steps)
|
832 |
+
schedulers.append(scheduler)
|
833 |
+
|
834 |
+
with autocast(device):
|
835 |
+
# CLIP Text Embeddings
|
836 |
+
tokens_unconditional = clip_tokenizer(null_prompt, padding="max_length",
|
837 |
+
max_length=clip_tokenizer.model_max_length,
|
838 |
+
truncation=True, return_tensors="pt",
|
839 |
+
return_overflowing_tokens=True)
|
840 |
+
embedding_unconditional = clip(tokens_unconditional.input_ids.to(device)).last_hidden_state
|
841 |
+
|
842 |
+
tokens_conditional = clip_tokenizer(prompt, padding="max_length",
|
843 |
+
max_length=clip_tokenizer.model_max_length,
|
844 |
+
truncation=True, return_tensors="pt",
|
845 |
+
return_overflowing_tokens=True)
|
846 |
+
embedding_conditional = clip(tokens_conditional.input_ids.to(device)).last_hidden_state
|
847 |
+
|
848 |
+
#Process prompt editing (if running Prompt-to-Prompt)
|
849 |
+
if prompt_edit is not None:
|
850 |
+
tokens_conditional_edit = clip_tokenizer(prompt_edit, padding="max_length",
|
851 |
+
max_length=clip_tokenizer.model_max_length,
|
852 |
+
truncation=True, return_tensors="pt",
|
853 |
+
return_overflowing_tokens=True)
|
854 |
+
embedding_conditional_edit = clip(tokens_conditional_edit.input_ids.to(device)).last_hidden_state
|
855 |
+
|
856 |
+
init_attention_edit(tokens_conditional, tokens_conditional_edit)
|
857 |
+
|
858 |
+
init_attention_func()
|
859 |
+
init_attention_weights(prompt_edit_token_weights)
|
860 |
+
|
861 |
+
timesteps = schedulers[0].timesteps[t_limit:]
|
862 |
+
if reverse: timesteps = timesteps.flip(0)
|
863 |
+
|
864 |
+
for i, t in tqdm(enumerate(timesteps), total=len(timesteps)):
|
865 |
+
t_scale = t / schedulers[0].num_train_timesteps
|
866 |
+
|
867 |
+
if (reverse) and (not run_baseline):
|
868 |
+
# Reverse mixing layer
|
869 |
+
new_latents = [l.clone() for l in latent_pair]
|
870 |
+
new_latents[1] = (new_latents[1].clone() - (1-mix_weight)*new_latents[0].clone()) / mix_weight
|
871 |
+
new_latents[0] = (new_latents[0].clone() - (1-mix_weight)*new_latents[1].clone()) / mix_weight
|
872 |
+
latent_pair = new_latents
|
873 |
+
|
874 |
+
# alternate EDICT steps
|
875 |
+
for latent_i in range(2):
|
876 |
+
if run_baseline and latent_i==1: continue # just have one sequence for baseline
|
877 |
+
# this modifies latent_pair[i] while using
|
878 |
+
# latent_pair[(i+1)%2]
|
879 |
+
if reverse and (not run_baseline):
|
880 |
+
if leapfrog_steps:
|
881 |
+
# what i would be from going other way
|
882 |
+
orig_i = len(timesteps) - (i+1)
|
883 |
+
offset = (orig_i+1) % 2
|
884 |
+
latent_i = (latent_i + offset) % 2
|
885 |
+
else:
|
886 |
+
# Do 1 then 0
|
887 |
+
latent_i = (latent_i+1)%2
|
888 |
+
else:
|
889 |
+
if leapfrog_steps:
|
890 |
+
offset = i%2
|
891 |
+
latent_i = (latent_i + offset) % 2
|
892 |
+
|
893 |
+
latent_j = ((latent_i+1) % 2) if not run_baseline else latent_i
|
894 |
+
|
895 |
+
latent_model_input = latent_pair[latent_j]
|
896 |
+
latent_base = latent_pair[latent_i]
|
897 |
+
|
898 |
+
#Predict the unconditional noise residual
|
899 |
+
noise_pred_uncond = unet(latent_model_input, t,
|
900 |
+
encoder_hidden_states=embedding_unconditional).sample
|
901 |
+
|
902 |
+
#Prepare the Cross-Attention layers
|
903 |
+
if prompt_edit is not None:
|
904 |
+
save_last_tokens_attention()
|
905 |
+
save_last_self_attention()
|
906 |
+
else:
|
907 |
+
#Use weights on non-edited prompt when edit is None
|
908 |
+
use_last_tokens_attention_weights()
|
909 |
+
|
910 |
+
#Predict the conditional noise residual and save the cross-attention layer activations
|
911 |
+
noise_pred_cond = unet(latent_model_input, t,
|
912 |
+
encoder_hidden_states=embedding_conditional).sample
|
913 |
+
|
914 |
+
#Edit the Cross-Attention layer activations
|
915 |
+
if prompt_edit is not None:
|
916 |
+
t_scale = t / schedulers[0].num_train_timesteps
|
917 |
+
if t_scale >= prompt_edit_tokens_start and t_scale <= prompt_edit_tokens_end:
|
918 |
+
use_last_tokens_attention()
|
919 |
+
if t_scale >= prompt_edit_spatial_start and t_scale <= prompt_edit_spatial_end:
|
920 |
+
use_last_self_attention()
|
921 |
+
|
922 |
+
#Use weights on edited prompt
|
923 |
+
use_last_tokens_attention_weights()
|
924 |
+
|
925 |
+
#Predict the edited conditional noise residual using the cross-attention masks
|
926 |
+
noise_pred_cond = unet(latent_model_input,
|
927 |
+
t,
|
928 |
+
encoder_hidden_states=embedding_conditional_edit).sample
|
929 |
+
|
930 |
+
#Perform guidance
|
931 |
+
grad = (noise_pred_cond - noise_pred_uncond)
|
932 |
+
noise_pred = noise_pred_uncond + guidance_scale * grad
|
933 |
+
|
934 |
+
|
935 |
+
step_call = reverse_step if reverse else forward_step
|
936 |
+
new_latent = step_call(schedulers[latent_i],
|
937 |
+
noise_pred,
|
938 |
+
t,
|
939 |
+
latent_base)# .prev_sample
|
940 |
+
new_latent = new_latent.to(latent_base.dtype)
|
941 |
+
|
942 |
+
latent_pair[latent_i] = new_latent
|
943 |
+
|
944 |
+
if (not reverse) and (not run_baseline):
|
945 |
+
# Mixing layer (contraction) during generative process
|
946 |
+
new_latents = [l.clone() for l in latent_pair]
|
947 |
+
new_latents[0] = (mix_weight*new_latents[0] + (1-mix_weight)*new_latents[1]).clone()
|
948 |
+
new_latents[1] = ((1-mix_weight)*new_latents[0] + (mix_weight)*new_latents[1]).clone()
|
949 |
+
latent_pair = new_latents
|
950 |
+
|
951 |
+
#scale and decode the image latents with vae, can return latents instead of images
|
952 |
+
if reverse or return_latents:
|
953 |
+
results = [latent_pair]
|
954 |
+
return results if len(results)>1 else results[0]
|
955 |
+
|
956 |
+
# decode latents to iamges
|
957 |
+
images = []
|
958 |
+
for latent_i in range(2):
|
959 |
+
latent = latent_pair[latent_i] / 0.18215
|
960 |
+
image = vae.decode(latent.to(vae.dtype)).sample
|
961 |
+
images.append(image)
|
962 |
+
|
963 |
+
# Return images
|
964 |
+
return_arr = []
|
965 |
+
for image in images:
|
966 |
+
image = prep_image_for_return(image)
|
967 |
+
return_arr.append(image)
|
968 |
+
results = [return_arr]
|
969 |
+
return results if len(results)>1 else results[0]
|
970 |
+
|
971 |
+
|
my_diffusers/__init__.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .utils import (
|
2 |
+
is_inflect_available,
|
3 |
+
is_onnx_available,
|
4 |
+
is_scipy_available,
|
5 |
+
is_transformers_available,
|
6 |
+
is_unidecode_available,
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
__version__ = "0.3.0"
|
11 |
+
|
12 |
+
from .configuration_utils import ConfigMixin
|
13 |
+
from .modeling_utils import ModelMixin
|
14 |
+
from .models import AutoencoderKL, UNet2DConditionModel, UNet2DModel, VQModel
|
15 |
+
from .onnx_utils import OnnxRuntimeModel
|
16 |
+
from .optimization import (
|
17 |
+
get_constant_schedule,
|
18 |
+
get_constant_schedule_with_warmup,
|
19 |
+
get_cosine_schedule_with_warmup,
|
20 |
+
get_cosine_with_hard_restarts_schedule_with_warmup,
|
21 |
+
get_linear_schedule_with_warmup,
|
22 |
+
get_polynomial_decay_schedule_with_warmup,
|
23 |
+
get_scheduler,
|
24 |
+
)
|
25 |
+
from .pipeline_utils import DiffusionPipeline
|
26 |
+
from .pipelines import DDIMPipeline, DDPMPipeline, KarrasVePipeline, LDMPipeline, PNDMPipeline, ScoreSdeVePipeline
|
27 |
+
from .schedulers import (
|
28 |
+
DDIMScheduler,
|
29 |
+
DDPMScheduler,
|
30 |
+
KarrasVeScheduler,
|
31 |
+
PNDMScheduler,
|
32 |
+
SchedulerMixin,
|
33 |
+
ScoreSdeVeScheduler,
|
34 |
+
)
|
35 |
+
from .utils import logging
|
36 |
+
|
37 |
+
|
38 |
+
if is_scipy_available():
|
39 |
+
from .schedulers import LMSDiscreteScheduler
|
40 |
+
else:
|
41 |
+
from .utils.dummy_scipy_objects import * # noqa F403
|
42 |
+
|
43 |
+
from .training_utils import EMAModel
|
44 |
+
|
45 |
+
|
46 |
+
if is_transformers_available():
|
47 |
+
from .pipelines import (
|
48 |
+
LDMTextToImagePipeline,
|
49 |
+
StableDiffusionImg2ImgPipeline,
|
50 |
+
StableDiffusionInpaintPipeline,
|
51 |
+
StableDiffusionPipeline,
|
52 |
+
)
|
53 |
+
else:
|
54 |
+
from .utils.dummy_transformers_objects import * # noqa F403
|
55 |
+
|
56 |
+
|
57 |
+
if is_transformers_available() and is_onnx_available():
|
58 |
+
from .pipelines import StableDiffusionOnnxPipeline
|
59 |
+
else:
|
60 |
+
from .utils.dummy_transformers_and_onnx_objects import * # noqa F403
|
my_diffusers/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (1.86 kB). View file
|
|
my_diffusers/__pycache__/configuration_utils.cpython-38.pyc
ADDED
Binary file (15.5 kB). View file
|
|
my_diffusers/__pycache__/modeling_utils.cpython-38.pyc
ADDED
Binary file (18.9 kB). View file
|
|
my_diffusers/__pycache__/onnx_utils.cpython-38.pyc
ADDED
Binary file (6.28 kB). View file
|
|
my_diffusers/__pycache__/optimization.cpython-38.pyc
ADDED
Binary file (10.2 kB). View file
|
|
my_diffusers/__pycache__/pipeline_utils.cpython-38.pyc
ADDED
Binary file (14 kB). View file
|
|
my_diffusers/__pycache__/training_utils.cpython-38.pyc
ADDED
Binary file (3.63 kB). View file
|
|
my_diffusers/commands/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from abc import ABC, abstractmethod
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
|
19 |
+
class BaseDiffusersCLICommand(ABC):
|
20 |
+
@staticmethod
|
21 |
+
@abstractmethod
|
22 |
+
def register_subcommand(parser: ArgumentParser):
|
23 |
+
raise NotImplementedError()
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def run(self):
|
27 |
+
raise NotImplementedError()
|
my_diffusers/commands/diffusers_cli.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
from .env import EnvironmentCommand
|
19 |
+
|
20 |
+
|
21 |
+
def main():
|
22 |
+
parser = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli <command> [<args>]")
|
23 |
+
commands_parser = parser.add_subparsers(help="diffusers-cli command helpers")
|
24 |
+
|
25 |
+
# Register commands
|
26 |
+
EnvironmentCommand.register_subcommand(commands_parser)
|
27 |
+
|
28 |
+
# Let's go
|
29 |
+
args = parser.parse_args()
|
30 |
+
|
31 |
+
if not hasattr(args, "func"):
|
32 |
+
parser.print_help()
|
33 |
+
exit(1)
|
34 |
+
|
35 |
+
# Run
|
36 |
+
service = args.func(args)
|
37 |
+
service.run()
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
main()
|
my_diffusers/commands/env.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import platform
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
import huggingface_hub
|
19 |
+
|
20 |
+
from .. import __version__ as version
|
21 |
+
from ..utils import is_torch_available, is_transformers_available
|
22 |
+
from . import BaseDiffusersCLICommand
|
23 |
+
|
24 |
+
|
25 |
+
def info_command_factory(_):
|
26 |
+
return EnvironmentCommand()
|
27 |
+
|
28 |
+
|
29 |
+
class EnvironmentCommand(BaseDiffusersCLICommand):
|
30 |
+
@staticmethod
|
31 |
+
def register_subcommand(parser: ArgumentParser):
|
32 |
+
download_parser = parser.add_parser("env")
|
33 |
+
download_parser.set_defaults(func=info_command_factory)
|
34 |
+
|
35 |
+
def run(self):
|
36 |
+
hub_version = huggingface_hub.__version__
|
37 |
+
|
38 |
+
pt_version = "not installed"
|
39 |
+
pt_cuda_available = "NA"
|
40 |
+
if is_torch_available():
|
41 |
+
import torch
|
42 |
+
|
43 |
+
pt_version = torch.__version__
|
44 |
+
pt_cuda_available = torch.cuda.is_available()
|
45 |
+
|
46 |
+
transformers_version = "not installed"
|
47 |
+
if is_transformers_available:
|
48 |
+
import transformers
|
49 |
+
|
50 |
+
transformers_version = transformers.__version__
|
51 |
+
|
52 |
+
info = {
|
53 |
+
"`diffusers` version": version,
|
54 |
+
"Platform": platform.platform(),
|
55 |
+
"Python version": platform.python_version(),
|
56 |
+
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
|
57 |
+
"Huggingface_hub version": hub_version,
|
58 |
+
"Transformers version": transformers_version,
|
59 |
+
"Using GPU in script?": "<fill in>",
|
60 |
+
"Using distributed or parallel set-up in script?": "<fill in>",
|
61 |
+
}
|
62 |
+
|
63 |
+
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
|
64 |
+
print(self.format_dict(info))
|
65 |
+
|
66 |
+
return info
|
67 |
+
|
68 |
+
@staticmethod
|
69 |
+
def format_dict(d):
|
70 |
+
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
|
my_diffusers/configuration_utils.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" ConfigMixinuration base class and utilities."""
|
17 |
+
import functools
|
18 |
+
import inspect
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
import re
|
22 |
+
from collections import OrderedDict
|
23 |
+
from typing import Any, Dict, Tuple, Union
|
24 |
+
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
|
27 |
+
from requests import HTTPError
|
28 |
+
|
29 |
+
from . import __version__
|
30 |
+
from .utils import DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, logging
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
_re_configuration_file = re.compile(r"config\.(.*)\.json")
|
36 |
+
|
37 |
+
|
38 |
+
class ConfigMixin:
|
39 |
+
r"""
|
40 |
+
Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all
|
41 |
+
methods for loading/downloading/saving classes inheriting from [`ConfigMixin`] with
|
42 |
+
- [`~ConfigMixin.from_config`]
|
43 |
+
- [`~ConfigMixin.save_config`]
|
44 |
+
|
45 |
+
Class attributes:
|
46 |
+
- **config_name** (`str`) -- A filename under which the config should stored when calling
|
47 |
+
[`~ConfigMixin.save_config`] (should be overridden by parent class).
|
48 |
+
- **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
|
49 |
+
overridden by parent class).
|
50 |
+
"""
|
51 |
+
config_name = None
|
52 |
+
ignore_for_config = []
|
53 |
+
|
54 |
+
def register_to_config(self, **kwargs):
|
55 |
+
if self.config_name is None:
|
56 |
+
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
|
57 |
+
kwargs["_class_name"] = self.__class__.__name__
|
58 |
+
kwargs["_diffusers_version"] = __version__
|
59 |
+
|
60 |
+
for key, value in kwargs.items():
|
61 |
+
try:
|
62 |
+
setattr(self, key, value)
|
63 |
+
except AttributeError as err:
|
64 |
+
logger.error(f"Can't set {key} with value {value} for {self}")
|
65 |
+
raise err
|
66 |
+
|
67 |
+
if not hasattr(self, "_internal_dict"):
|
68 |
+
internal_dict = kwargs
|
69 |
+
else:
|
70 |
+
previous_dict = dict(self._internal_dict)
|
71 |
+
internal_dict = {**self._internal_dict, **kwargs}
|
72 |
+
logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
|
73 |
+
|
74 |
+
self._internal_dict = FrozenDict(internal_dict)
|
75 |
+
|
76 |
+
def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
77 |
+
"""
|
78 |
+
Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
|
79 |
+
[`~ConfigMixin.from_config`] class method.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
save_directory (`str` or `os.PathLike`):
|
83 |
+
Directory where the configuration JSON file will be saved (will be created if it does not exist).
|
84 |
+
"""
|
85 |
+
if os.path.isfile(save_directory):
|
86 |
+
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
87 |
+
|
88 |
+
os.makedirs(save_directory, exist_ok=True)
|
89 |
+
|
90 |
+
# If we save using the predefined names, we can load using `from_config`
|
91 |
+
output_config_file = os.path.join(save_directory, self.config_name)
|
92 |
+
|
93 |
+
self.to_json_file(output_config_file)
|
94 |
+
logger.info(f"ConfigMixinuration saved in {output_config_file}")
|
95 |
+
|
96 |
+
@classmethod
|
97 |
+
def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs):
|
98 |
+
r"""
|
99 |
+
Instantiate a Python class from a pre-defined JSON-file.
|
100 |
+
|
101 |
+
Parameters:
|
102 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
103 |
+
Can be either:
|
104 |
+
|
105 |
+
- A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an
|
106 |
+
organization name, like `google/ddpm-celebahq-256`.
|
107 |
+
- A path to a *directory* containing model weights saved using [`~ConfigMixin.save_config`], e.g.,
|
108 |
+
`./my_model_directory/`.
|
109 |
+
|
110 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
111 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
112 |
+
standard cache should not be used.
|
113 |
+
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
|
114 |
+
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
|
115 |
+
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
|
116 |
+
checkpoint with 3 labels).
|
117 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
118 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
119 |
+
cached versions if they exist.
|
120 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
121 |
+
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
122 |
+
file exists.
|
123 |
+
proxies (`Dict[str, str]`, *optional*):
|
124 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
125 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
126 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
127 |
+
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
128 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
129 |
+
Whether or not to only look at local files (i.e., do not try to download the model).
|
130 |
+
use_auth_token (`str` or *bool*, *optional*):
|
131 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
132 |
+
when running `transformers-cli login` (stored in `~/.huggingface`).
|
133 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
134 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
135 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
136 |
+
identifier allowed by git.
|
137 |
+
mirror (`str`, *optional*):
|
138 |
+
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
|
139 |
+
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
|
140 |
+
Please refer to the mirror site for more information.
|
141 |
+
|
142 |
+
<Tip>
|
143 |
+
|
144 |
+
Passing `use_auth_token=True`` is required when you want to use a private model.
|
145 |
+
|
146 |
+
</Tip>
|
147 |
+
|
148 |
+
<Tip>
|
149 |
+
|
150 |
+
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
|
151 |
+
use this method in a firewalled environment.
|
152 |
+
|
153 |
+
</Tip>
|
154 |
+
|
155 |
+
"""
|
156 |
+
config_dict = cls.get_config_dict(pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs)
|
157 |
+
|
158 |
+
init_dict, unused_kwargs = cls.extract_init_dict(config_dict, **kwargs)
|
159 |
+
|
160 |
+
model = cls(**init_dict)
|
161 |
+
|
162 |
+
if return_unused_kwargs:
|
163 |
+
return model, unused_kwargs
|
164 |
+
else:
|
165 |
+
return model
|
166 |
+
|
167 |
+
@classmethod
|
168 |
+
def get_config_dict(
|
169 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
170 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
171 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
172 |
+
force_download = kwargs.pop("force_download", False)
|
173 |
+
resume_download = kwargs.pop("resume_download", False)
|
174 |
+
proxies = kwargs.pop("proxies", None)
|
175 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
176 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
177 |
+
revision = kwargs.pop("revision", None)
|
178 |
+
subfolder = kwargs.pop("subfolder", None)
|
179 |
+
|
180 |
+
user_agent = {"file_type": "config"}
|
181 |
+
|
182 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
183 |
+
|
184 |
+
if cls.config_name is None:
|
185 |
+
raise ValueError(
|
186 |
+
"`self.config_name` is not defined. Note that one should not load a config from "
|
187 |
+
"`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
|
188 |
+
)
|
189 |
+
|
190 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
191 |
+
config_file = pretrained_model_name_or_path
|
192 |
+
elif os.path.isdir(pretrained_model_name_or_path):
|
193 |
+
if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
|
194 |
+
# Load from a PyTorch checkpoint
|
195 |
+
config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
|
196 |
+
elif subfolder is not None and os.path.isfile(
|
197 |
+
os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
|
198 |
+
):
|
199 |
+
config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
|
200 |
+
else:
|
201 |
+
raise EnvironmentError(
|
202 |
+
f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
|
203 |
+
)
|
204 |
+
else:
|
205 |
+
try:
|
206 |
+
# Load from URL or cache if already cached
|
207 |
+
config_file = hf_hub_download(
|
208 |
+
pretrained_model_name_or_path,
|
209 |
+
filename=cls.config_name,
|
210 |
+
cache_dir=cache_dir,
|
211 |
+
force_download=force_download,
|
212 |
+
proxies=proxies,
|
213 |
+
resume_download=resume_download,
|
214 |
+
local_files_only=local_files_only,
|
215 |
+
use_auth_token=use_auth_token,
|
216 |
+
user_agent=user_agent,
|
217 |
+
subfolder=subfolder,
|
218 |
+
revision=revision,
|
219 |
+
)
|
220 |
+
|
221 |
+
except RepositoryNotFoundError:
|
222 |
+
raise EnvironmentError(
|
223 |
+
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
|
224 |
+
" listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
|
225 |
+
" token having permission to this repo with `use_auth_token` or log in with `huggingface-cli"
|
226 |
+
" login` and pass `use_auth_token=True`."
|
227 |
+
)
|
228 |
+
except RevisionNotFoundError:
|
229 |
+
raise EnvironmentError(
|
230 |
+
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
|
231 |
+
" this model name. Check the model page at"
|
232 |
+
f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
|
233 |
+
)
|
234 |
+
except EntryNotFoundError:
|
235 |
+
raise EnvironmentError(
|
236 |
+
f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
|
237 |
+
)
|
238 |
+
except HTTPError as err:
|
239 |
+
raise EnvironmentError(
|
240 |
+
"There was a specific connection error when trying to load"
|
241 |
+
f" {pretrained_model_name_or_path}:\n{err}"
|
242 |
+
)
|
243 |
+
except ValueError:
|
244 |
+
raise EnvironmentError(
|
245 |
+
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
|
246 |
+
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
|
247 |
+
f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
|
248 |
+
" run the library in offline mode at"
|
249 |
+
" 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
|
250 |
+
)
|
251 |
+
except EnvironmentError:
|
252 |
+
raise EnvironmentError(
|
253 |
+
f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
|
254 |
+
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
|
255 |
+
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
|
256 |
+
f"containing a {cls.config_name} file"
|
257 |
+
)
|
258 |
+
|
259 |
+
try:
|
260 |
+
# Load config dict
|
261 |
+
config_dict = cls._dict_from_json_file(config_file)
|
262 |
+
except (json.JSONDecodeError, UnicodeDecodeError):
|
263 |
+
raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
|
264 |
+
|
265 |
+
return config_dict
|
266 |
+
|
267 |
+
@classmethod
|
268 |
+
def extract_init_dict(cls, config_dict, **kwargs):
|
269 |
+
expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys())
|
270 |
+
expected_keys.remove("self")
|
271 |
+
# remove general kwargs if present in dict
|
272 |
+
if "kwargs" in expected_keys:
|
273 |
+
expected_keys.remove("kwargs")
|
274 |
+
# remove keys to be ignored
|
275 |
+
if len(cls.ignore_for_config) > 0:
|
276 |
+
expected_keys = expected_keys - set(cls.ignore_for_config)
|
277 |
+
init_dict = {}
|
278 |
+
for key in expected_keys:
|
279 |
+
if key in kwargs:
|
280 |
+
# overwrite key
|
281 |
+
init_dict[key] = kwargs.pop(key)
|
282 |
+
elif key in config_dict:
|
283 |
+
# use value from config dict
|
284 |
+
init_dict[key] = config_dict.pop(key)
|
285 |
+
|
286 |
+
unused_kwargs = config_dict.update(kwargs)
|
287 |
+
|
288 |
+
passed_keys = set(init_dict.keys())
|
289 |
+
if len(expected_keys - passed_keys) > 0:
|
290 |
+
logger.warning(
|
291 |
+
f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
|
292 |
+
)
|
293 |
+
|
294 |
+
return init_dict, unused_kwargs
|
295 |
+
|
296 |
+
@classmethod
|
297 |
+
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
|
298 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
299 |
+
text = reader.read()
|
300 |
+
return json.loads(text)
|
301 |
+
|
302 |
+
def __repr__(self):
|
303 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
304 |
+
|
305 |
+
@property
|
306 |
+
def config(self) -> Dict[str, Any]:
|
307 |
+
return self._internal_dict
|
308 |
+
|
309 |
+
def to_json_string(self) -> str:
|
310 |
+
"""
|
311 |
+
Serializes this instance to a JSON string.
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
`str`: String containing all the attributes that make up this configuration instance in JSON format.
|
315 |
+
"""
|
316 |
+
config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
|
317 |
+
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
318 |
+
|
319 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
|
320 |
+
"""
|
321 |
+
Save this instance to a JSON file.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
json_file_path (`str` or `os.PathLike`):
|
325 |
+
Path to the JSON file in which this configuration instance's parameters will be saved.
|
326 |
+
"""
|
327 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
328 |
+
writer.write(self.to_json_string())
|
329 |
+
|
330 |
+
|
331 |
+
class FrozenDict(OrderedDict):
|
332 |
+
def __init__(self, *args, **kwargs):
|
333 |
+
super().__init__(*args, **kwargs)
|
334 |
+
|
335 |
+
for key, value in self.items():
|
336 |
+
setattr(self, key, value)
|
337 |
+
|
338 |
+
self.__frozen = True
|
339 |
+
|
340 |
+
def __delitem__(self, *args, **kwargs):
|
341 |
+
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
|
342 |
+
|
343 |
+
def setdefault(self, *args, **kwargs):
|
344 |
+
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
|
345 |
+
|
346 |
+
def pop(self, *args, **kwargs):
|
347 |
+
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
|
348 |
+
|
349 |
+
def update(self, *args, **kwargs):
|
350 |
+
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
|
351 |
+
|
352 |
+
def __setattr__(self, name, value):
|
353 |
+
if hasattr(self, "__frozen") and self.__frozen:
|
354 |
+
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
|
355 |
+
super().__setattr__(name, value)
|
356 |
+
|
357 |
+
def __setitem__(self, name, value):
|
358 |
+
if hasattr(self, "__frozen") and self.__frozen:
|
359 |
+
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
|
360 |
+
super().__setitem__(name, value)
|
361 |
+
|
362 |
+
|
363 |
+
def register_to_config(init):
|
364 |
+
r"""
|
365 |
+
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
|
366 |
+
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
|
367 |
+
shouldn't be registered in the config, use the `ignore_for_config` class variable
|
368 |
+
|
369 |
+
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
|
370 |
+
"""
|
371 |
+
|
372 |
+
@functools.wraps(init)
|
373 |
+
def inner_init(self, *args, **kwargs):
|
374 |
+
# Ignore private kwargs in the init.
|
375 |
+
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
|
376 |
+
init(self, *args, **init_kwargs)
|
377 |
+
if not isinstance(self, ConfigMixin):
|
378 |
+
raise RuntimeError(
|
379 |
+
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
|
380 |
+
"not inherit from `ConfigMixin`."
|
381 |
+
)
|
382 |
+
|
383 |
+
ignore = getattr(self, "ignore_for_config", [])
|
384 |
+
# Get positional arguments aligned with kwargs
|
385 |
+
new_kwargs = {}
|
386 |
+
signature = inspect.signature(init)
|
387 |
+
parameters = {
|
388 |
+
name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
|
389 |
+
}
|
390 |
+
for arg, name in zip(args, parameters.keys()):
|
391 |
+
new_kwargs[name] = arg
|
392 |
+
|
393 |
+
# Then add all kwargs
|
394 |
+
new_kwargs.update(
|
395 |
+
{
|
396 |
+
k: init_kwargs.get(k, default)
|
397 |
+
for k, default in parameters.items()
|
398 |
+
if k not in ignore and k not in new_kwargs
|
399 |
+
}
|
400 |
+
)
|
401 |
+
getattr(self, "register_to_config")(**new_kwargs)
|
402 |
+
|
403 |
+
return inner_init
|
my_diffusers/dependency_versions_check.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import sys
|
15 |
+
|
16 |
+
from .dependency_versions_table import deps
|
17 |
+
from .utils.versions import require_version, require_version_core
|
18 |
+
|
19 |
+
|
20 |
+
# define which module versions we always want to check at run time
|
21 |
+
# (usually the ones defined in `install_requires` in setup.py)
|
22 |
+
#
|
23 |
+
# order specific notes:
|
24 |
+
# - tqdm must be checked before tokenizers
|
25 |
+
|
26 |
+
pkgs_to_check_at_runtime = "python tqdm regex requests packaging filelock numpy tokenizers".split()
|
27 |
+
if sys.version_info < (3, 7):
|
28 |
+
pkgs_to_check_at_runtime.append("dataclasses")
|
29 |
+
if sys.version_info < (3, 8):
|
30 |
+
pkgs_to_check_at_runtime.append("importlib_metadata")
|
31 |
+
|
32 |
+
for pkg in pkgs_to_check_at_runtime:
|
33 |
+
if pkg in deps:
|
34 |
+
if pkg == "tokenizers":
|
35 |
+
# must be loaded here, or else tqdm check may fail
|
36 |
+
from .utils import is_tokenizers_available
|
37 |
+
|
38 |
+
if not is_tokenizers_available():
|
39 |
+
continue # not required, check version only if installed
|
40 |
+
|
41 |
+
require_version_core(deps[pkg])
|
42 |
+
else:
|
43 |
+
raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
|
44 |
+
|
45 |
+
|
46 |
+
def dep_version_check(pkg, hint=None):
|
47 |
+
require_version(deps[pkg], hint)
|
my_diffusers/dependency_versions_table.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# THIS FILE HAS BEEN AUTOGENERATED. To update:
|
2 |
+
# 1. modify the `_deps` dict in setup.py
|
3 |
+
# 2. run `make deps_table_update``
|
4 |
+
deps = {
|
5 |
+
"Pillow": "Pillow",
|
6 |
+
"accelerate": "accelerate>=0.11.0",
|
7 |
+
"black": "black==22.3",
|
8 |
+
"datasets": "datasets",
|
9 |
+
"filelock": "filelock",
|
10 |
+
"flake8": "flake8>=3.8.3",
|
11 |
+
"hf-doc-builder": "hf-doc-builder>=0.3.0",
|
12 |
+
"huggingface-hub": "huggingface-hub>=0.8.1",
|
13 |
+
"importlib_metadata": "importlib_metadata",
|
14 |
+
"isort": "isort>=5.5.4",
|
15 |
+
"modelcards": "modelcards==0.1.4",
|
16 |
+
"numpy": "numpy",
|
17 |
+
"pytest": "pytest",
|
18 |
+
"pytest-timeout": "pytest-timeout",
|
19 |
+
"pytest-xdist": "pytest-xdist",
|
20 |
+
"scipy": "scipy",
|
21 |
+
"regex": "regex!=2019.12.17",
|
22 |
+
"requests": "requests",
|
23 |
+
"tensorboard": "tensorboard",
|
24 |
+
"torch": "torch>=1.4",
|
25 |
+
"transformers": "transformers>=4.21.0",
|
26 |
+
}
|
my_diffusers/dynamic_modules_utils.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Utilities to dynamically load objects from the Hub."""
|
16 |
+
|
17 |
+
import importlib
|
18 |
+
import os
|
19 |
+
import re
|
20 |
+
import shutil
|
21 |
+
import sys
|
22 |
+
from pathlib import Path
|
23 |
+
from typing import Dict, Optional, Union
|
24 |
+
|
25 |
+
from huggingface_hub import cached_download
|
26 |
+
|
27 |
+
from .utils import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
31 |
+
|
32 |
+
|
33 |
+
def init_hf_modules():
|
34 |
+
"""
|
35 |
+
Creates the cache directory for modules with an init, and adds it to the Python path.
|
36 |
+
"""
|
37 |
+
# This function has already been executed if HF_MODULES_CACHE already is in the Python path.
|
38 |
+
if HF_MODULES_CACHE in sys.path:
|
39 |
+
return
|
40 |
+
|
41 |
+
sys.path.append(HF_MODULES_CACHE)
|
42 |
+
os.makedirs(HF_MODULES_CACHE, exist_ok=True)
|
43 |
+
init_path = Path(HF_MODULES_CACHE) / "__init__.py"
|
44 |
+
if not init_path.exists():
|
45 |
+
init_path.touch()
|
46 |
+
|
47 |
+
|
48 |
+
def create_dynamic_module(name: Union[str, os.PathLike]):
|
49 |
+
"""
|
50 |
+
Creates a dynamic module in the cache directory for modules.
|
51 |
+
"""
|
52 |
+
init_hf_modules()
|
53 |
+
dynamic_module_path = Path(HF_MODULES_CACHE) / name
|
54 |
+
# If the parent module does not exist yet, recursively create it.
|
55 |
+
if not dynamic_module_path.parent.exists():
|
56 |
+
create_dynamic_module(dynamic_module_path.parent)
|
57 |
+
os.makedirs(dynamic_module_path, exist_ok=True)
|
58 |
+
init_path = dynamic_module_path / "__init__.py"
|
59 |
+
if not init_path.exists():
|
60 |
+
init_path.touch()
|
61 |
+
|
62 |
+
|
63 |
+
def get_relative_imports(module_file):
|
64 |
+
"""
|
65 |
+
Get the list of modules that are relatively imported in a module file.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
module_file (`str` or `os.PathLike`): The module file to inspect.
|
69 |
+
"""
|
70 |
+
with open(module_file, "r", encoding="utf-8") as f:
|
71 |
+
content = f.read()
|
72 |
+
|
73 |
+
# Imports of the form `import .xxx`
|
74 |
+
relative_imports = re.findall("^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
|
75 |
+
# Imports of the form `from .xxx import yyy`
|
76 |
+
relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
|
77 |
+
# Unique-ify
|
78 |
+
return list(set(relative_imports))
|
79 |
+
|
80 |
+
|
81 |
+
def get_relative_import_files(module_file):
|
82 |
+
"""
|
83 |
+
Get the list of all files that are needed for a given module. Note that this function recurses through the relative
|
84 |
+
imports (if a imports b and b imports c, it will return module files for b and c).
|
85 |
+
|
86 |
+
Args:
|
87 |
+
module_file (`str` or `os.PathLike`): The module file to inspect.
|
88 |
+
"""
|
89 |
+
no_change = False
|
90 |
+
files_to_check = [module_file]
|
91 |
+
all_relative_imports = []
|
92 |
+
|
93 |
+
# Let's recurse through all relative imports
|
94 |
+
while not no_change:
|
95 |
+
new_imports = []
|
96 |
+
for f in files_to_check:
|
97 |
+
new_imports.extend(get_relative_imports(f))
|
98 |
+
|
99 |
+
module_path = Path(module_file).parent
|
100 |
+
new_import_files = [str(module_path / m) for m in new_imports]
|
101 |
+
new_import_files = [f for f in new_import_files if f not in all_relative_imports]
|
102 |
+
files_to_check = [f"{f}.py" for f in new_import_files]
|
103 |
+
|
104 |
+
no_change = len(new_import_files) == 0
|
105 |
+
all_relative_imports.extend(files_to_check)
|
106 |
+
|
107 |
+
return all_relative_imports
|
108 |
+
|
109 |
+
|
110 |
+
def check_imports(filename):
|
111 |
+
"""
|
112 |
+
Check if the current Python environment contains all the libraries that are imported in a file.
|
113 |
+
"""
|
114 |
+
with open(filename, "r", encoding="utf-8") as f:
|
115 |
+
content = f.read()
|
116 |
+
|
117 |
+
# Imports of the form `import xxx`
|
118 |
+
imports = re.findall("^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
|
119 |
+
# Imports of the form `from xxx import yyy`
|
120 |
+
imports += re.findall("^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
|
121 |
+
# Only keep the top-level module
|
122 |
+
imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]
|
123 |
+
|
124 |
+
# Unique-ify and test we got them all
|
125 |
+
imports = list(set(imports))
|
126 |
+
missing_packages = []
|
127 |
+
for imp in imports:
|
128 |
+
try:
|
129 |
+
importlib.import_module(imp)
|
130 |
+
except ImportError:
|
131 |
+
missing_packages.append(imp)
|
132 |
+
|
133 |
+
if len(missing_packages) > 0:
|
134 |
+
raise ImportError(
|
135 |
+
"This modeling file requires the following packages that were not found in your environment: "
|
136 |
+
f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`"
|
137 |
+
)
|
138 |
+
|
139 |
+
return get_relative_imports(filename)
|
140 |
+
|
141 |
+
|
142 |
+
def get_class_in_module(class_name, module_path):
|
143 |
+
"""
|
144 |
+
Import a module on the cache directory for modules and extract a class from it.
|
145 |
+
"""
|
146 |
+
module_path = module_path.replace(os.path.sep, ".")
|
147 |
+
module = importlib.import_module(module_path)
|
148 |
+
return getattr(module, class_name)
|
149 |
+
|
150 |
+
|
151 |
+
def get_cached_module_file(
|
152 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
153 |
+
module_file: str,
|
154 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
155 |
+
force_download: bool = False,
|
156 |
+
resume_download: bool = False,
|
157 |
+
proxies: Optional[Dict[str, str]] = None,
|
158 |
+
use_auth_token: Optional[Union[bool, str]] = None,
|
159 |
+
revision: Optional[str] = None,
|
160 |
+
local_files_only: bool = False,
|
161 |
+
):
|
162 |
+
"""
|
163 |
+
Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached
|
164 |
+
Transformers module.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
168 |
+
This can be either:
|
169 |
+
|
170 |
+
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
171 |
+
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
|
172 |
+
under a user or organization name, like `dbmdz/bert-base-german-cased`.
|
173 |
+
- a path to a *directory* containing a configuration file saved using the
|
174 |
+
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
|
175 |
+
|
176 |
+
module_file (`str`):
|
177 |
+
The name of the module file containing the class to look for.
|
178 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
179 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
|
180 |
+
cache should not be used.
|
181 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
182 |
+
Whether or not to force to (re-)download the configuration files and override the cached versions if they
|
183 |
+
exist.
|
184 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
185 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
|
186 |
+
proxies (`Dict[str, str]`, *optional*):
|
187 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
188 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
189 |
+
use_auth_token (`str` or *bool*, *optional*):
|
190 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
191 |
+
when running `transformers-cli login` (stored in `~/.huggingface`).
|
192 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
193 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
194 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
195 |
+
identifier allowed by git.
|
196 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
197 |
+
If `True`, will only try to load the tokenizer configuration from local files.
|
198 |
+
|
199 |
+
<Tip>
|
200 |
+
|
201 |
+
Passing `use_auth_token=True` is required when you want to use a private model.
|
202 |
+
|
203 |
+
</Tip>
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`str`: The path to the module inside the cache.
|
207 |
+
"""
|
208 |
+
# Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file.
|
209 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
210 |
+
module_file_or_url = os.path.join(pretrained_model_name_or_path, module_file)
|
211 |
+
submodule = "local"
|
212 |
+
|
213 |
+
if os.path.isfile(module_file_or_url):
|
214 |
+
resolved_module_file = module_file_or_url
|
215 |
+
else:
|
216 |
+
try:
|
217 |
+
# Load from URL or cache if already cached
|
218 |
+
resolved_module_file = cached_download(
|
219 |
+
module_file_or_url,
|
220 |
+
cache_dir=cache_dir,
|
221 |
+
force_download=force_download,
|
222 |
+
proxies=proxies,
|
223 |
+
resume_download=resume_download,
|
224 |
+
local_files_only=local_files_only,
|
225 |
+
use_auth_token=use_auth_token,
|
226 |
+
)
|
227 |
+
|
228 |
+
except EnvironmentError:
|
229 |
+
logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
|
230 |
+
raise
|
231 |
+
|
232 |
+
# Check we have all the requirements in our environment
|
233 |
+
modules_needed = check_imports(resolved_module_file)
|
234 |
+
|
235 |
+
# Now we move the module inside our cached dynamic modules.
|
236 |
+
full_submodule = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
|
237 |
+
create_dynamic_module(full_submodule)
|
238 |
+
submodule_path = Path(HF_MODULES_CACHE) / full_submodule
|
239 |
+
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
|
240 |
+
# that hash, to only copy when there is a modification but it seems overkill for now).
|
241 |
+
# The only reason we do the copy is to avoid putting too many folders in sys.path.
|
242 |
+
shutil.copy(resolved_module_file, submodule_path / module_file)
|
243 |
+
for module_needed in modules_needed:
|
244 |
+
module_needed = f"{module_needed}.py"
|
245 |
+
shutil.copy(os.path.join(pretrained_model_name_or_path, module_needed), submodule_path / module_needed)
|
246 |
+
return os.path.join(full_submodule, module_file)
|
247 |
+
|
248 |
+
|
249 |
+
def get_class_from_dynamic_module(
|
250 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
251 |
+
module_file: str,
|
252 |
+
class_name: str,
|
253 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
254 |
+
force_download: bool = False,
|
255 |
+
resume_download: bool = False,
|
256 |
+
proxies: Optional[Dict[str, str]] = None,
|
257 |
+
use_auth_token: Optional[Union[bool, str]] = None,
|
258 |
+
revision: Optional[str] = None,
|
259 |
+
local_files_only: bool = False,
|
260 |
+
**kwargs,
|
261 |
+
):
|
262 |
+
"""
|
263 |
+
Extracts a class from a module file, present in the local folder or repository of a model.
|
264 |
+
|
265 |
+
<Tip warning={true}>
|
266 |
+
|
267 |
+
Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should
|
268 |
+
therefore only be called on trusted repos.
|
269 |
+
|
270 |
+
</Tip>
|
271 |
+
|
272 |
+
Args:
|
273 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
274 |
+
This can be either:
|
275 |
+
|
276 |
+
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
277 |
+
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
|
278 |
+
under a user or organization name, like `dbmdz/bert-base-german-cased`.
|
279 |
+
- a path to a *directory* containing a configuration file saved using the
|
280 |
+
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
|
281 |
+
|
282 |
+
module_file (`str`):
|
283 |
+
The name of the module file containing the class to look for.
|
284 |
+
class_name (`str`):
|
285 |
+
The name of the class to import in the module.
|
286 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
287 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
|
288 |
+
cache should not be used.
|
289 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
290 |
+
Whether or not to force to (re-)download the configuration files and override the cached versions if they
|
291 |
+
exist.
|
292 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
293 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
|
294 |
+
proxies (`Dict[str, str]`, *optional*):
|
295 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
296 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
297 |
+
use_auth_token (`str` or `bool`, *optional*):
|
298 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
299 |
+
when running `transformers-cli login` (stored in `~/.huggingface`).
|
300 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
301 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
302 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
303 |
+
identifier allowed by git.
|
304 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
305 |
+
If `True`, will only try to load the tokenizer configuration from local files.
|
306 |
+
|
307 |
+
<Tip>
|
308 |
+
|
309 |
+
Passing `use_auth_token=True` is required when you want to use a private model.
|
310 |
+
|
311 |
+
</Tip>
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
`type`: The class, dynamically imported from the module.
|
315 |
+
|
316 |
+
Examples:
|
317 |
+
|
318 |
+
```python
|
319 |
+
# Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
|
320 |
+
# module.
|
321 |
+
cls = get_class_from_dynamic_module("sgugger/my-bert-model", "modeling.py", "MyBertModel")
|
322 |
+
```"""
|
323 |
+
# And lastly we get the class inside our newly created module
|
324 |
+
final_module = get_cached_module_file(
|
325 |
+
pretrained_model_name_or_path,
|
326 |
+
module_file,
|
327 |
+
cache_dir=cache_dir,
|
328 |
+
force_download=force_download,
|
329 |
+
resume_download=resume_download,
|
330 |
+
proxies=proxies,
|
331 |
+
use_auth_token=use_auth_token,
|
332 |
+
revision=revision,
|
333 |
+
local_files_only=local_files_only,
|
334 |
+
)
|
335 |
+
return get_class_in_module(class_name, final_module.replace(".py", ""))
|
my_diffusers/hub_utils.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
import shutil
|
19 |
+
from pathlib import Path
|
20 |
+
from typing import Optional
|
21 |
+
|
22 |
+
from huggingface_hub import HfFolder, Repository, whoami
|
23 |
+
|
24 |
+
from .pipeline_utils import DiffusionPipeline
|
25 |
+
from .utils import is_modelcards_available, logging
|
26 |
+
|
27 |
+
|
28 |
+
if is_modelcards_available():
|
29 |
+
from modelcards import CardData, ModelCard
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "utils" / "model_card_template.md"
|
36 |
+
|
37 |
+
|
38 |
+
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
39 |
+
if token is None:
|
40 |
+
token = HfFolder.get_token()
|
41 |
+
if organization is None:
|
42 |
+
username = whoami(token)["name"]
|
43 |
+
return f"{username}/{model_id}"
|
44 |
+
else:
|
45 |
+
return f"{organization}/{model_id}"
|
46 |
+
|
47 |
+
|
48 |
+
def init_git_repo(args, at_init: bool = False):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
Initializes a git repo in `args.hub_model_id`.
|
52 |
+
at_init (`bool`, *optional*, defaults to `False`):
|
53 |
+
Whether this function is called before any training or not. If `self.args.overwrite_output_dir` is `True`
|
54 |
+
and `at_init` is `True`, the path to the repo (which is `self.args.output_dir`) might be wiped out.
|
55 |
+
"""
|
56 |
+
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
|
57 |
+
return
|
58 |
+
hub_token = args.hub_token if hasattr(args, "hub_token") else None
|
59 |
+
use_auth_token = True if hub_token is None else hub_token
|
60 |
+
if not hasattr(args, "hub_model_id") or args.hub_model_id is None:
|
61 |
+
repo_name = Path(args.output_dir).absolute().name
|
62 |
+
else:
|
63 |
+
repo_name = args.hub_model_id
|
64 |
+
if "/" not in repo_name:
|
65 |
+
repo_name = get_full_repo_name(repo_name, token=hub_token)
|
66 |
+
|
67 |
+
try:
|
68 |
+
repo = Repository(
|
69 |
+
args.output_dir,
|
70 |
+
clone_from=repo_name,
|
71 |
+
use_auth_token=use_auth_token,
|
72 |
+
private=args.hub_private_repo,
|
73 |
+
)
|
74 |
+
except EnvironmentError:
|
75 |
+
if args.overwrite_output_dir and at_init:
|
76 |
+
# Try again after wiping output_dir
|
77 |
+
shutil.rmtree(args.output_dir)
|
78 |
+
repo = Repository(
|
79 |
+
args.output_dir,
|
80 |
+
clone_from=repo_name,
|
81 |
+
use_auth_token=use_auth_token,
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
raise
|
85 |
+
|
86 |
+
repo.git_pull()
|
87 |
+
|
88 |
+
# By default, ignore the checkpoint folders
|
89 |
+
if not os.path.exists(os.path.join(args.output_dir, ".gitignore")):
|
90 |
+
with open(os.path.join(args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer:
|
91 |
+
writer.writelines(["checkpoint-*/"])
|
92 |
+
|
93 |
+
return repo
|
94 |
+
|
95 |
+
|
96 |
+
def push_to_hub(
|
97 |
+
args,
|
98 |
+
pipeline: DiffusionPipeline,
|
99 |
+
repo: Repository,
|
100 |
+
commit_message: Optional[str] = "End of training",
|
101 |
+
blocking: bool = True,
|
102 |
+
**kwargs,
|
103 |
+
) -> str:
|
104 |
+
"""
|
105 |
+
Parameters:
|
106 |
+
Upload *self.model* and *self.tokenizer* to the 🤗 model hub on the repo *self.args.hub_model_id*.
|
107 |
+
commit_message (`str`, *optional*, defaults to `"End of training"`):
|
108 |
+
Message to commit while pushing.
|
109 |
+
blocking (`bool`, *optional*, defaults to `True`):
|
110 |
+
Whether the function should return only when the `git push` has finished.
|
111 |
+
kwargs:
|
112 |
+
Additional keyword arguments passed along to [`create_model_card`].
|
113 |
+
Returns:
|
114 |
+
The url of the commit of your model in the given repository if `blocking=False`, a tuple with the url of the
|
115 |
+
commit and an object to track the progress of the commit if `blocking=True`
|
116 |
+
"""
|
117 |
+
|
118 |
+
if not hasattr(args, "hub_model_id") or args.hub_model_id is None:
|
119 |
+
model_name = Path(args.output_dir).name
|
120 |
+
else:
|
121 |
+
model_name = args.hub_model_id.split("/")[-1]
|
122 |
+
|
123 |
+
output_dir = args.output_dir
|
124 |
+
os.makedirs(output_dir, exist_ok=True)
|
125 |
+
logger.info(f"Saving pipeline checkpoint to {output_dir}")
|
126 |
+
pipeline.save_pretrained(output_dir)
|
127 |
+
|
128 |
+
# Only push from one node.
|
129 |
+
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
|
130 |
+
return
|
131 |
+
|
132 |
+
# Cancel any async push in progress if blocking=True. The commits will all be pushed together.
|
133 |
+
if (
|
134 |
+
blocking
|
135 |
+
and len(repo.command_queue) > 0
|
136 |
+
and repo.command_queue[-1] is not None
|
137 |
+
and not repo.command_queue[-1].is_done
|
138 |
+
):
|
139 |
+
repo.command_queue[-1]._process.kill()
|
140 |
+
|
141 |
+
git_head_commit_url = repo.push_to_hub(commit_message=commit_message, blocking=blocking, auto_lfs_prune=True)
|
142 |
+
# push separately the model card to be independent from the rest of the model
|
143 |
+
create_model_card(args, model_name=model_name)
|
144 |
+
try:
|
145 |
+
repo.push_to_hub(commit_message="update model card README.md", blocking=blocking, auto_lfs_prune=True)
|
146 |
+
except EnvironmentError as exc:
|
147 |
+
logger.error(f"Error pushing update to the model card. Please read logs and retry.\n${exc}")
|
148 |
+
|
149 |
+
return git_head_commit_url
|
150 |
+
|
151 |
+
|
152 |
+
def create_model_card(args, model_name):
|
153 |
+
if not is_modelcards_available:
|
154 |
+
raise ValueError(
|
155 |
+
"Please make sure to have `modelcards` installed when using the `create_model_card` function. You can"
|
156 |
+
" install the package with `pip install modelcards`."
|
157 |
+
)
|
158 |
+
|
159 |
+
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
|
160 |
+
return
|
161 |
+
|
162 |
+
hub_token = args.hub_token if hasattr(args, "hub_token") else None
|
163 |
+
repo_name = get_full_repo_name(model_name, token=hub_token)
|
164 |
+
|
165 |
+
model_card = ModelCard.from_template(
|
166 |
+
card_data=CardData( # Card metadata object that will be converted to YAML block
|
167 |
+
language="en",
|
168 |
+
license="apache-2.0",
|
169 |
+
library_name="diffusers",
|
170 |
+
tags=[],
|
171 |
+
datasets=args.dataset_name,
|
172 |
+
metrics=[],
|
173 |
+
),
|
174 |
+
template_path=MODEL_CARD_TEMPLATE_PATH,
|
175 |
+
model_name=model_name,
|
176 |
+
repo_name=repo_name,
|
177 |
+
dataset_name=args.dataset_name if hasattr(args, "dataset_name") else None,
|
178 |
+
learning_rate=args.learning_rate,
|
179 |
+
train_batch_size=args.train_batch_size,
|
180 |
+
eval_batch_size=args.eval_batch_size,
|
181 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps
|
182 |
+
if hasattr(args, "gradient_accumulation_steps")
|
183 |
+
else None,
|
184 |
+
adam_beta1=args.adam_beta1 if hasattr(args, "adam_beta1") else None,
|
185 |
+
adam_beta2=args.adam_beta2 if hasattr(args, "adam_beta2") else None,
|
186 |
+
adam_weight_decay=args.adam_weight_decay if hasattr(args, "adam_weight_decay") else None,
|
187 |
+
adam_epsilon=args.adam_epsilon if hasattr(args, "adam_epsilon") else None,
|
188 |
+
lr_scheduler=args.lr_scheduler if hasattr(args, "lr_scheduler") else None,
|
189 |
+
lr_warmup_steps=args.lr_warmup_steps if hasattr(args, "lr_warmup_steps") else None,
|
190 |
+
ema_inv_gamma=args.ema_inv_gamma if hasattr(args, "ema_inv_gamma") else None,
|
191 |
+
ema_power=args.ema_power if hasattr(args, "ema_power") else None,
|
192 |
+
ema_max_decay=args.ema_max_decay if hasattr(args, "ema_max_decay") else None,
|
193 |
+
mixed_precision=args.mixed_precision,
|
194 |
+
)
|
195 |
+
|
196 |
+
card_path = os.path.join(args.output_dir, "README.md")
|
197 |
+
model_card.save(card_path)
|
my_diffusers/modeling_utils.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import Callable, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import Tensor, device
|
22 |
+
|
23 |
+
from huggingface_hub import hf_hub_download
|
24 |
+
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
|
25 |
+
from requests import HTTPError
|
26 |
+
|
27 |
+
from .utils import CONFIG_NAME, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, logging
|
28 |
+
|
29 |
+
|
30 |
+
WEIGHTS_NAME = "diffusion_pytorch_model.bin"
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
def get_parameter_device(parameter: torch.nn.Module):
|
37 |
+
try:
|
38 |
+
return next(parameter.parameters()).device
|
39 |
+
except StopIteration:
|
40 |
+
# For torch.nn.DataParallel compatibility in PyTorch 1.5
|
41 |
+
|
42 |
+
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
|
43 |
+
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
|
44 |
+
return tuples
|
45 |
+
|
46 |
+
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
|
47 |
+
first_tuple = next(gen)
|
48 |
+
return first_tuple[1].device
|
49 |
+
|
50 |
+
|
51 |
+
def get_parameter_dtype(parameter: torch.nn.Module):
|
52 |
+
try:
|
53 |
+
return next(parameter.parameters()).dtype
|
54 |
+
except StopIteration:
|
55 |
+
# For torch.nn.DataParallel compatibility in PyTorch 1.5
|
56 |
+
|
57 |
+
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
|
58 |
+
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
|
59 |
+
return tuples
|
60 |
+
|
61 |
+
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
|
62 |
+
first_tuple = next(gen)
|
63 |
+
return first_tuple[1].dtype
|
64 |
+
|
65 |
+
|
66 |
+
def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
|
67 |
+
"""
|
68 |
+
Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
|
69 |
+
"""
|
70 |
+
try:
|
71 |
+
return torch.load(checkpoint_file, map_location="cpu")
|
72 |
+
except Exception as e:
|
73 |
+
try:
|
74 |
+
with open(checkpoint_file) as f:
|
75 |
+
if f.read().startswith("version"):
|
76 |
+
raise OSError(
|
77 |
+
"You seem to have cloned a repository without having git-lfs installed. Please install "
|
78 |
+
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
|
79 |
+
"you cloned."
|
80 |
+
)
|
81 |
+
else:
|
82 |
+
raise ValueError(
|
83 |
+
f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
|
84 |
+
"model. Make sure you have saved the model properly."
|
85 |
+
) from e
|
86 |
+
except (UnicodeDecodeError, ValueError):
|
87 |
+
raise OSError(
|
88 |
+
f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
|
89 |
+
f"at '{checkpoint_file}'. "
|
90 |
+
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
def _load_state_dict_into_model(model_to_load, state_dict):
|
95 |
+
# Convert old format to new format if needed from a PyTorch state_dict
|
96 |
+
# copy state_dict so _load_from_state_dict can modify it
|
97 |
+
state_dict = state_dict.copy()
|
98 |
+
error_msgs = []
|
99 |
+
|
100 |
+
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
|
101 |
+
# so we need to apply the function recursively.
|
102 |
+
def load(module: torch.nn.Module, prefix=""):
|
103 |
+
args = (state_dict, prefix, {}, True, [], [], error_msgs)
|
104 |
+
module._load_from_state_dict(*args)
|
105 |
+
|
106 |
+
for name, child in module._modules.items():
|
107 |
+
if child is not None:
|
108 |
+
load(child, prefix + name + ".")
|
109 |
+
|
110 |
+
load(model_to_load)
|
111 |
+
|
112 |
+
return error_msgs
|
113 |
+
|
114 |
+
|
115 |
+
class ModelMixin(torch.nn.Module):
|
116 |
+
r"""
|
117 |
+
Base class for all models.
|
118 |
+
|
119 |
+
[`ModelMixin`] takes care of storing the configuration of the models and handles methods for loading, downloading
|
120 |
+
and saving models.
|
121 |
+
|
122 |
+
- **config_name** ([`str`]) -- A filename under which the model should be stored when calling
|
123 |
+
[`~modeling_utils.ModelMixin.save_pretrained`].
|
124 |
+
"""
|
125 |
+
config_name = CONFIG_NAME
|
126 |
+
_automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
|
127 |
+
|
128 |
+
def __init__(self):
|
129 |
+
super().__init__()
|
130 |
+
|
131 |
+
def save_pretrained(
|
132 |
+
self,
|
133 |
+
save_directory: Union[str, os.PathLike],
|
134 |
+
is_main_process: bool = True,
|
135 |
+
save_function: Callable = torch.save,
|
136 |
+
):
|
137 |
+
"""
|
138 |
+
Save a model and its configuration file to a directory, so that it can be re-loaded using the
|
139 |
+
`[`~modeling_utils.ModelMixin.from_pretrained`]` class method.
|
140 |
+
|
141 |
+
Arguments:
|
142 |
+
save_directory (`str` or `os.PathLike`):
|
143 |
+
Directory to which to save. Will be created if it doesn't exist.
|
144 |
+
is_main_process (`bool`, *optional*, defaults to `True`):
|
145 |
+
Whether the process calling this is the main process or not. Useful when in distributed training like
|
146 |
+
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
|
147 |
+
the main process to avoid race conditions.
|
148 |
+
save_function (`Callable`):
|
149 |
+
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
|
150 |
+
need to replace `torch.save` by another method.
|
151 |
+
"""
|
152 |
+
if os.path.isfile(save_directory):
|
153 |
+
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
154 |
+
return
|
155 |
+
|
156 |
+
os.makedirs(save_directory, exist_ok=True)
|
157 |
+
|
158 |
+
model_to_save = self
|
159 |
+
|
160 |
+
# Attach architecture to the config
|
161 |
+
# Save the config
|
162 |
+
if is_main_process:
|
163 |
+
model_to_save.save_config(save_directory)
|
164 |
+
|
165 |
+
# Save the model
|
166 |
+
state_dict = model_to_save.state_dict()
|
167 |
+
|
168 |
+
# Clean the folder from a previous save
|
169 |
+
for filename in os.listdir(save_directory):
|
170 |
+
full_filename = os.path.join(save_directory, filename)
|
171 |
+
# If we have a shard file that is not going to be replaced, we delete it, but only from the main process
|
172 |
+
# in distributed settings to avoid race conditions.
|
173 |
+
if filename.startswith(WEIGHTS_NAME[:-4]) and os.path.isfile(full_filename) and is_main_process:
|
174 |
+
os.remove(full_filename)
|
175 |
+
|
176 |
+
# Save the model
|
177 |
+
save_function(state_dict, os.path.join(save_directory, WEIGHTS_NAME))
|
178 |
+
|
179 |
+
logger.info(f"Model weights saved in {os.path.join(save_directory, WEIGHTS_NAME)}")
|
180 |
+
|
181 |
+
@classmethod
|
182 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
183 |
+
r"""
|
184 |
+
Instantiate a pretrained pytorch model from a pre-trained model configuration.
|
185 |
+
|
186 |
+
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
187 |
+
the model, you should first set it back in training mode with `model.train()`.
|
188 |
+
|
189 |
+
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
|
190 |
+
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
|
191 |
+
task.
|
192 |
+
|
193 |
+
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
|
194 |
+
weights are discarded.
|
195 |
+
|
196 |
+
Parameters:
|
197 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
198 |
+
Can be either:
|
199 |
+
|
200 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
201 |
+
Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
|
202 |
+
- A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
|
203 |
+
`./my_model_directory/`.
|
204 |
+
|
205 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
206 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
207 |
+
standard cache should not be used.
|
208 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
209 |
+
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
|
210 |
+
will be automatically derived from the model's weights.
|
211 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
212 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
213 |
+
cached versions if they exist.
|
214 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
215 |
+
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
216 |
+
file exists.
|
217 |
+
proxies (`Dict[str, str]`, *optional*):
|
218 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
219 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
220 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
221 |
+
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
222 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
223 |
+
Whether or not to only look at local files (i.e., do not try to download the model).
|
224 |
+
use_auth_token (`str` or *bool*, *optional*):
|
225 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
226 |
+
when running `diffusers-cli login` (stored in `~/.huggingface`).
|
227 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
228 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
229 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
230 |
+
identifier allowed by git.
|
231 |
+
mirror (`str`, *optional*):
|
232 |
+
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
|
233 |
+
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
|
234 |
+
Please refer to the mirror site for more information.
|
235 |
+
|
236 |
+
<Tip>
|
237 |
+
|
238 |
+
Passing `use_auth_token=True`` is required when you want to use a private model.
|
239 |
+
|
240 |
+
</Tip>
|
241 |
+
|
242 |
+
<Tip>
|
243 |
+
|
244 |
+
Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
|
245 |
+
this method in a firewalled environment.
|
246 |
+
|
247 |
+
</Tip>
|
248 |
+
|
249 |
+
"""
|
250 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
251 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
252 |
+
force_download = kwargs.pop("force_download", False)
|
253 |
+
resume_download = kwargs.pop("resume_download", False)
|
254 |
+
proxies = kwargs.pop("proxies", None)
|
255 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
256 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
257 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
258 |
+
revision = kwargs.pop("revision", None)
|
259 |
+
from_auto_class = kwargs.pop("_from_auto", False)
|
260 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
261 |
+
subfolder = kwargs.pop("subfolder", None)
|
262 |
+
|
263 |
+
user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
|
264 |
+
|
265 |
+
# Load config if we don't provide a configuration
|
266 |
+
config_path = pretrained_model_name_or_path
|
267 |
+
model, unused_kwargs = cls.from_config(
|
268 |
+
config_path,
|
269 |
+
cache_dir=cache_dir,
|
270 |
+
return_unused_kwargs=True,
|
271 |
+
force_download=force_download,
|
272 |
+
resume_download=resume_download,
|
273 |
+
proxies=proxies,
|
274 |
+
local_files_only=local_files_only,
|
275 |
+
use_auth_token=use_auth_token,
|
276 |
+
revision=revision,
|
277 |
+
subfolder=subfolder,
|
278 |
+
**kwargs,
|
279 |
+
)
|
280 |
+
|
281 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
282 |
+
raise ValueError(
|
283 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
284 |
+
)
|
285 |
+
elif torch_dtype is not None:
|
286 |
+
model = model.to(torch_dtype)
|
287 |
+
|
288 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
289 |
+
# This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
|
290 |
+
# Load model
|
291 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
292 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
293 |
+
if os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
|
294 |
+
# Load from a PyTorch checkpoint
|
295 |
+
model_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
|
296 |
+
elif subfolder is not None and os.path.isfile(
|
297 |
+
os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)
|
298 |
+
):
|
299 |
+
model_file = os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)
|
300 |
+
else:
|
301 |
+
raise EnvironmentError(
|
302 |
+
f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_model_name_or_path}."
|
303 |
+
)
|
304 |
+
else:
|
305 |
+
try:
|
306 |
+
# Load from URL or cache if already cached
|
307 |
+
model_file = hf_hub_download(
|
308 |
+
pretrained_model_name_or_path,
|
309 |
+
filename=WEIGHTS_NAME,
|
310 |
+
cache_dir=cache_dir,
|
311 |
+
force_download=force_download,
|
312 |
+
proxies=proxies,
|
313 |
+
resume_download=resume_download,
|
314 |
+
local_files_only=local_files_only,
|
315 |
+
use_auth_token=use_auth_token,
|
316 |
+
user_agent=user_agent,
|
317 |
+
subfolder=subfolder,
|
318 |
+
revision=revision,
|
319 |
+
)
|
320 |
+
|
321 |
+
except RepositoryNotFoundError:
|
322 |
+
raise EnvironmentError(
|
323 |
+
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
|
324 |
+
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
|
325 |
+
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
|
326 |
+
"login` and pass `use_auth_token=True`."
|
327 |
+
)
|
328 |
+
except RevisionNotFoundError:
|
329 |
+
raise EnvironmentError(
|
330 |
+
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
|
331 |
+
"this model name. Check the model page at "
|
332 |
+
f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
|
333 |
+
)
|
334 |
+
except EntryNotFoundError:
|
335 |
+
raise EnvironmentError(
|
336 |
+
f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME}."
|
337 |
+
)
|
338 |
+
except HTTPError as err:
|
339 |
+
raise EnvironmentError(
|
340 |
+
"There was a specific connection error when trying to load"
|
341 |
+
f" {pretrained_model_name_or_path}:\n{err}"
|
342 |
+
)
|
343 |
+
except ValueError:
|
344 |
+
raise EnvironmentError(
|
345 |
+
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
|
346 |
+
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
|
347 |
+
f" directory containing a file named {WEIGHTS_NAME} or"
|
348 |
+
" \nCheckout your internet connection or see how to run the library in"
|
349 |
+
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
|
350 |
+
)
|
351 |
+
except EnvironmentError:
|
352 |
+
raise EnvironmentError(
|
353 |
+
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
|
354 |
+
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
|
355 |
+
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
|
356 |
+
f"containing a file named {WEIGHTS_NAME}"
|
357 |
+
)
|
358 |
+
|
359 |
+
# restore default dtype
|
360 |
+
state_dict = load_state_dict(model_file)
|
361 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
|
362 |
+
model,
|
363 |
+
state_dict,
|
364 |
+
model_file,
|
365 |
+
pretrained_model_name_or_path,
|
366 |
+
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
367 |
+
)
|
368 |
+
|
369 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
370 |
+
model.eval()
|
371 |
+
|
372 |
+
if output_loading_info:
|
373 |
+
loading_info = {
|
374 |
+
"missing_keys": missing_keys,
|
375 |
+
"unexpected_keys": unexpected_keys,
|
376 |
+
"mismatched_keys": mismatched_keys,
|
377 |
+
"error_msgs": error_msgs,
|
378 |
+
}
|
379 |
+
return model, loading_info
|
380 |
+
|
381 |
+
return model
|
382 |
+
|
383 |
+
@classmethod
|
384 |
+
def _load_pretrained_model(
|
385 |
+
cls,
|
386 |
+
model,
|
387 |
+
state_dict,
|
388 |
+
resolved_archive_file,
|
389 |
+
pretrained_model_name_or_path,
|
390 |
+
ignore_mismatched_sizes=False,
|
391 |
+
):
|
392 |
+
# Retrieve missing & unexpected_keys
|
393 |
+
model_state_dict = model.state_dict()
|
394 |
+
loaded_keys = [k for k in state_dict.keys()]
|
395 |
+
|
396 |
+
expected_keys = list(model_state_dict.keys())
|
397 |
+
|
398 |
+
original_loaded_keys = loaded_keys
|
399 |
+
|
400 |
+
missing_keys = list(set(expected_keys) - set(loaded_keys))
|
401 |
+
unexpected_keys = list(set(loaded_keys) - set(expected_keys))
|
402 |
+
|
403 |
+
# Make sure we are able to load base models as well as derived models (with heads)
|
404 |
+
model_to_load = model
|
405 |
+
|
406 |
+
def _find_mismatched_keys(
|
407 |
+
state_dict,
|
408 |
+
model_state_dict,
|
409 |
+
loaded_keys,
|
410 |
+
ignore_mismatched_sizes,
|
411 |
+
):
|
412 |
+
mismatched_keys = []
|
413 |
+
if ignore_mismatched_sizes:
|
414 |
+
for checkpoint_key in loaded_keys:
|
415 |
+
model_key = checkpoint_key
|
416 |
+
|
417 |
+
if (
|
418 |
+
model_key in model_state_dict
|
419 |
+
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
|
420 |
+
):
|
421 |
+
mismatched_keys.append(
|
422 |
+
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
|
423 |
+
)
|
424 |
+
del state_dict[checkpoint_key]
|
425 |
+
return mismatched_keys
|
426 |
+
|
427 |
+
if state_dict is not None:
|
428 |
+
# Whole checkpoint
|
429 |
+
mismatched_keys = _find_mismatched_keys(
|
430 |
+
state_dict,
|
431 |
+
model_state_dict,
|
432 |
+
original_loaded_keys,
|
433 |
+
ignore_mismatched_sizes,
|
434 |
+
)
|
435 |
+
error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
|
436 |
+
|
437 |
+
if len(error_msgs) > 0:
|
438 |
+
error_msg = "\n\t".join(error_msgs)
|
439 |
+
if "size mismatch" in error_msg:
|
440 |
+
error_msg += (
|
441 |
+
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
|
442 |
+
)
|
443 |
+
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
444 |
+
|
445 |
+
if len(unexpected_keys) > 0:
|
446 |
+
logger.warning(
|
447 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
|
448 |
+
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
|
449 |
+
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
|
450 |
+
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
|
451 |
+
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
|
452 |
+
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
|
453 |
+
" identical (initializing a BertForSequenceClassification model from a"
|
454 |
+
" BertForSequenceClassification model)."
|
455 |
+
)
|
456 |
+
else:
|
457 |
+
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
458 |
+
if len(missing_keys) > 0:
|
459 |
+
logger.warning(
|
460 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
461 |
+
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
|
462 |
+
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
463 |
+
)
|
464 |
+
elif len(mismatched_keys) == 0:
|
465 |
+
logger.info(
|
466 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
|
467 |
+
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
|
468 |
+
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
|
469 |
+
" without further training."
|
470 |
+
)
|
471 |
+
if len(mismatched_keys) > 0:
|
472 |
+
mismatched_warning = "\n".join(
|
473 |
+
[
|
474 |
+
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
|
475 |
+
for key, shape1, shape2 in mismatched_keys
|
476 |
+
]
|
477 |
+
)
|
478 |
+
logger.warning(
|
479 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
480 |
+
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
|
481 |
+
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
|
482 |
+
" able to use it for predictions and inference."
|
483 |
+
)
|
484 |
+
|
485 |
+
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
|
486 |
+
|
487 |
+
@property
|
488 |
+
def device(self) -> device:
|
489 |
+
"""
|
490 |
+
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
|
491 |
+
device).
|
492 |
+
"""
|
493 |
+
return get_parameter_device(self)
|
494 |
+
|
495 |
+
@property
|
496 |
+
def dtype(self) -> torch.dtype:
|
497 |
+
"""
|
498 |
+
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
|
499 |
+
"""
|
500 |
+
return get_parameter_dtype(self)
|
501 |
+
|
502 |
+
def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
|
503 |
+
"""
|
504 |
+
Get number of (optionally, trainable or non-embeddings) parameters in the module.
|
505 |
+
|
506 |
+
Args:
|
507 |
+
only_trainable (`bool`, *optional*, defaults to `False`):
|
508 |
+
Whether or not to return only the number of trainable parameters
|
509 |
+
|
510 |
+
exclude_embeddings (`bool`, *optional*, defaults to `False`):
|
511 |
+
Whether or not to return only the number of non-embeddings parameters
|
512 |
+
|
513 |
+
Returns:
|
514 |
+
`int`: The number of parameters.
|
515 |
+
"""
|
516 |
+
|
517 |
+
if exclude_embeddings:
|
518 |
+
embedding_param_names = [
|
519 |
+
f"{name}.weight"
|
520 |
+
for name, module_type in self.named_modules()
|
521 |
+
if isinstance(module_type, torch.nn.Embedding)
|
522 |
+
]
|
523 |
+
non_embedding_parameters = [
|
524 |
+
parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
|
525 |
+
]
|
526 |
+
return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
|
527 |
+
else:
|
528 |
+
return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
|
529 |
+
|
530 |
+
|
531 |
+
def unwrap_model(model: torch.nn.Module) -> torch.nn.Module:
|
532 |
+
"""
|
533 |
+
Recursively unwraps a model from potential containers (as used in distributed training).
|
534 |
+
|
535 |
+
Args:
|
536 |
+
model (`torch.nn.Module`): The model to unwrap.
|
537 |
+
"""
|
538 |
+
# since there could be multiple levels of wrapping, unwrap recursively
|
539 |
+
if hasattr(model, "module"):
|
540 |
+
return unwrap_model(model.module)
|
541 |
+
else:
|
542 |
+
return model
|
my_diffusers/models/__init__.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .unet_2d import UNet2DModel
|
16 |
+
from .unet_2d_condition import UNet2DConditionModel
|
17 |
+
from .vae import AutoencoderKL, VQModel
|
my_diffusers/models/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (322 Bytes). View file
|
|
my_diffusers/models/__pycache__/attention.cpython-38.pyc
ADDED
Binary file (12.2 kB). View file
|
|
my_diffusers/models/__pycache__/embeddings.cpython-38.pyc
ADDED
Binary file (3.71 kB). View file
|
|
my_diffusers/models/__pycache__/resnet.cpython-38.pyc
ADDED
Binary file (14.6 kB). View file
|
|
my_diffusers/models/__pycache__/unet_2d.cpython-38.pyc
ADDED
Binary file (7.84 kB). View file
|
|
my_diffusers/models/__pycache__/unet_2d_condition.cpython-38.pyc
ADDED
Binary file (8.68 kB). View file
|
|
my_diffusers/models/__pycache__/unet_blocks.cpython-38.pyc
ADDED
Binary file (23 kB). View file
|
|
my_diffusers/models/__pycache__/vae.cpython-38.pyc
ADDED
Binary file (16.5 kB). View file
|
|
my_diffusers/models/attention.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
|
9 |
+
class AttentionBlock(nn.Module):
|
10 |
+
"""
|
11 |
+
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
|
12 |
+
to the N-d case.
|
13 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
14 |
+
Uses three q, k, v linear layers to compute attention.
|
15 |
+
|
16 |
+
Parameters:
|
17 |
+
channels (:obj:`int`): The number of channels in the input and output.
|
18 |
+
num_head_channels (:obj:`int`, *optional*):
|
19 |
+
The number of channels in each head. If None, then `num_heads` = 1.
|
20 |
+
num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm.
|
21 |
+
rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
|
22 |
+
eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
channels: int,
|
28 |
+
num_head_channels: Optional[int] = None,
|
29 |
+
num_groups: int = 32,
|
30 |
+
rescale_output_factor = 1.0,
|
31 |
+
eps = 1e-5,
|
32 |
+
):
|
33 |
+
super().__init__()
|
34 |
+
self.channels = channels
|
35 |
+
|
36 |
+
self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
|
37 |
+
self.num_head_size = num_head_channels
|
38 |
+
self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)
|
39 |
+
|
40 |
+
# define q,k,v as linear layers
|
41 |
+
self.query = nn.Linear(channels, channels)
|
42 |
+
self.key = nn.Linear(channels, channels)
|
43 |
+
self.value = nn.Linear(channels, channels)
|
44 |
+
|
45 |
+
self.rescale_output_factor = rescale_output_factor
|
46 |
+
self.proj_attn = nn.Linear(channels, channels, 1)
|
47 |
+
|
48 |
+
def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
|
49 |
+
new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
|
50 |
+
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
|
51 |
+
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
|
52 |
+
return new_projection
|
53 |
+
|
54 |
+
def forward(self, hidden_states):
|
55 |
+
residual = hidden_states
|
56 |
+
batch, channel, height, width = hidden_states.shape
|
57 |
+
|
58 |
+
# norm
|
59 |
+
hidden_states = self.group_norm(hidden_states)
|
60 |
+
|
61 |
+
hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)
|
62 |
+
|
63 |
+
# proj to q, k, v
|
64 |
+
query_proj = self.query(hidden_states)
|
65 |
+
key_proj = self.key(hidden_states)
|
66 |
+
value_proj = self.value(hidden_states)
|
67 |
+
|
68 |
+
# transpose
|
69 |
+
query_states = self.transpose_for_scores(query_proj)
|
70 |
+
key_states = self.transpose_for_scores(key_proj)
|
71 |
+
value_states = self.transpose_for_scores(value_proj)
|
72 |
+
|
73 |
+
# get scores
|
74 |
+
scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
|
75 |
+
|
76 |
+
attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale)
|
77 |
+
attention_probs = torch.softmax(attention_scores.double(), dim=-1).type(attention_scores.dtype)
|
78 |
+
|
79 |
+
# compute attention output
|
80 |
+
hidden_states = torch.matmul(attention_probs, value_states)
|
81 |
+
|
82 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
|
83 |
+
new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
|
84 |
+
hidden_states = hidden_states.view(new_hidden_states_shape)
|
85 |
+
|
86 |
+
# compute next hidden_states
|
87 |
+
hidden_states = self.proj_attn(hidden_states)
|
88 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)
|
89 |
+
|
90 |
+
# res connect and rescale
|
91 |
+
hidden_states = (hidden_states + residual) / self.rescale_output_factor
|
92 |
+
return hidden_states
|
93 |
+
|
94 |
+
|
95 |
+
class SpatialTransformer(nn.Module):
|
96 |
+
"""
|
97 |
+
Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
|
98 |
+
standard transformer action. Finally, reshape to image.
|
99 |
+
|
100 |
+
Parameters:
|
101 |
+
in_channels (:obj:`int`): The number of channels in the input and output.
|
102 |
+
n_heads (:obj:`int`): The number of heads to use for multi-head attention.
|
103 |
+
d_head (:obj:`int`): The number of channels in each head.
|
104 |
+
depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
105 |
+
dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use.
|
106 |
+
context_dim (:obj:`int`, *optional*): The number of context dimensions to use.
|
107 |
+
"""
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
in_channels: int,
|
112 |
+
n_heads: int,
|
113 |
+
d_head: int,
|
114 |
+
depth: int = 1,
|
115 |
+
dropout = 0.0,
|
116 |
+
context_dim: Optional[int] = None,
|
117 |
+
):
|
118 |
+
super().__init__()
|
119 |
+
self.n_heads = n_heads
|
120 |
+
self.d_head = d_head
|
121 |
+
self.in_channels = in_channels
|
122 |
+
inner_dim = n_heads * d_head
|
123 |
+
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
124 |
+
|
125 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
126 |
+
|
127 |
+
self.transformer_blocks = nn.ModuleList(
|
128 |
+
[
|
129 |
+
BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
130 |
+
for d in range(depth)
|
131 |
+
]
|
132 |
+
)
|
133 |
+
|
134 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
135 |
+
|
136 |
+
def _set_attention_slice(self, slice_size):
|
137 |
+
for block in self.transformer_blocks:
|
138 |
+
block._set_attention_slice(slice_size)
|
139 |
+
|
140 |
+
def forward(self, x, context=None):
|
141 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
142 |
+
b, c, h, w = x.shape
|
143 |
+
x_in = x
|
144 |
+
x = self.norm(x)
|
145 |
+
x = self.proj_in(x)
|
146 |
+
x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
|
147 |
+
for block in self.transformer_blocks:
|
148 |
+
x = block(x, context=context)
|
149 |
+
x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
|
150 |
+
x = self.proj_out(x)
|
151 |
+
return x + x_in
|
152 |
+
|
153 |
+
|
154 |
+
class BasicTransformerBlock(nn.Module):
|
155 |
+
r"""
|
156 |
+
A basic Transformer block.
|
157 |
+
|
158 |
+
Parameters:
|
159 |
+
dim (:obj:`int`): The number of channels in the input and output.
|
160 |
+
n_heads (:obj:`int`): The number of heads to use for multi-head attention.
|
161 |
+
d_head (:obj:`int`): The number of channels in each head.
|
162 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
163 |
+
context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention.
|
164 |
+
gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network.
|
165 |
+
checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing.
|
166 |
+
"""
|
167 |
+
|
168 |
+
def __init__(
|
169 |
+
self,
|
170 |
+
dim: int,
|
171 |
+
n_heads: int,
|
172 |
+
d_head: int,
|
173 |
+
dropout=0.0,
|
174 |
+
context_dim: Optional[int] = None,
|
175 |
+
gated_ff: bool = True,
|
176 |
+
checkpoint: bool = True,
|
177 |
+
):
|
178 |
+
super().__init__()
|
179 |
+
self.attn1 = CrossAttention(
|
180 |
+
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
181 |
+
) # is a self-attention
|
182 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
183 |
+
self.attn2 = CrossAttention(
|
184 |
+
query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
185 |
+
) # is self-attn if context is none
|
186 |
+
self.norm1 = nn.LayerNorm(dim)
|
187 |
+
self.norm2 = nn.LayerNorm(dim)
|
188 |
+
self.norm3 = nn.LayerNorm(dim)
|
189 |
+
self.checkpoint = checkpoint
|
190 |
+
|
191 |
+
def _set_attention_slice(self, slice_size):
|
192 |
+
self.attn1._slice_size = slice_size
|
193 |
+
self.attn2._slice_size = slice_size
|
194 |
+
|
195 |
+
def forward(self, x, context=None):
|
196 |
+
x = x.contiguous() if x.device.type == "mps" else x
|
197 |
+
x = self.attn1(self.norm1(x)) + x
|
198 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
199 |
+
x = self.ff(self.norm3(x)) + x
|
200 |
+
return x
|
201 |
+
|
202 |
+
|
203 |
+
class CrossAttention(nn.Module):
|
204 |
+
r"""
|
205 |
+
A cross attention layer.
|
206 |
+
|
207 |
+
Parameters:
|
208 |
+
query_dim (:obj:`int`): The number of channels in the query.
|
209 |
+
context_dim (:obj:`int`, *optional*):
|
210 |
+
The number of channels in the context. If not given, defaults to `query_dim`.
|
211 |
+
heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
|
212 |
+
dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head.
|
213 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
214 |
+
"""
|
215 |
+
|
216 |
+
def __init__(
|
217 |
+
self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0
|
218 |
+
):
|
219 |
+
super().__init__()
|
220 |
+
inner_dim = dim_head * heads
|
221 |
+
context_dim = context_dim if context_dim is not None else query_dim
|
222 |
+
|
223 |
+
self.scale = dim_head**-0.5
|
224 |
+
self.heads = heads
|
225 |
+
# for slice_size > 0 the attention score computation
|
226 |
+
# is split across the batch axis to save memory
|
227 |
+
# You can set slice_size with `set_attention_slice`
|
228 |
+
self._slice_size = None
|
229 |
+
|
230 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
231 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
232 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
233 |
+
|
234 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
235 |
+
|
236 |
+
def reshape_heads_to_batch_dim(self, tensor):
|
237 |
+
batch_size, seq_len, dim = tensor.shape
|
238 |
+
head_size = self.heads
|
239 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
240 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
|
241 |
+
return tensor
|
242 |
+
|
243 |
+
def reshape_batch_dim_to_heads(self, tensor):
|
244 |
+
batch_size, seq_len, dim = tensor.shape
|
245 |
+
head_size = self.heads
|
246 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
247 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
248 |
+
return tensor
|
249 |
+
|
250 |
+
def forward(self, x, context=None, mask=None):
|
251 |
+
batch_size, sequence_length, dim = x.shape
|
252 |
+
|
253 |
+
q = self.to_q(x)
|
254 |
+
context = context if context is not None else x
|
255 |
+
k = self.to_k(context)
|
256 |
+
v = self.to_v(context)
|
257 |
+
|
258 |
+
q = self.reshape_heads_to_batch_dim(q)
|
259 |
+
k = self.reshape_heads_to_batch_dim(k)
|
260 |
+
v = self.reshape_heads_to_batch_dim(v)
|
261 |
+
|
262 |
+
# TODO(PVP) - mask is currently never used. Remember to re-implement when used
|
263 |
+
|
264 |
+
# attention, what we cannot get enough of
|
265 |
+
hidden_states = self._attention(q, k, v, sequence_length, dim)
|
266 |
+
|
267 |
+
return self.to_out(hidden_states)
|
268 |
+
|
269 |
+
def _attention(self, query, key, value, sequence_length, dim):
|
270 |
+
batch_size_attention = query.shape[0]
|
271 |
+
hidden_states = torch.zeros(
|
272 |
+
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
|
273 |
+
)
|
274 |
+
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
|
275 |
+
for i in range(hidden_states.shape[0] // slice_size):
|
276 |
+
start_idx = i * slice_size
|
277 |
+
end_idx = (i + 1) * slice_size
|
278 |
+
attn_slice = (
|
279 |
+
torch.einsum("b i d, b j d -> b i j", query[start_idx:end_idx], key[start_idx:end_idx]) * self.scale
|
280 |
+
)
|
281 |
+
attn_slice = attn_slice.softmax(dim=-1)
|
282 |
+
attn_slice = torch.einsum("b i j, b j d -> b i d", attn_slice, value[start_idx:end_idx])
|
283 |
+
|
284 |
+
hidden_states[start_idx:end_idx] = attn_slice
|
285 |
+
|
286 |
+
# reshape hidden_states
|
287 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
288 |
+
return hidden_states
|
289 |
+
|
290 |
+
|
291 |
+
class FeedForward(nn.Module):
|
292 |
+
r"""
|
293 |
+
A feed-forward layer.
|
294 |
+
|
295 |
+
Parameters:
|
296 |
+
dim (:obj:`int`): The number of channels in the input.
|
297 |
+
dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
298 |
+
mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
299 |
+
glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation.
|
300 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
301 |
+
"""
|
302 |
+
|
303 |
+
def __init__(
|
304 |
+
self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout = 0.0
|
305 |
+
):
|
306 |
+
super().__init__()
|
307 |
+
inner_dim = int(dim * mult)
|
308 |
+
dim_out = dim_out if dim_out is not None else dim
|
309 |
+
project_in = GEGLU(dim, inner_dim)
|
310 |
+
|
311 |
+
self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
|
312 |
+
|
313 |
+
def forward(self, x):
|
314 |
+
return self.net(x)
|
315 |
+
|
316 |
+
|
317 |
+
# feedforward
|
318 |
+
class GEGLU(nn.Module):
|
319 |
+
r"""
|
320 |
+
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
321 |
+
|
322 |
+
Parameters:
|
323 |
+
dim_in (:obj:`int`): The number of channels in the input.
|
324 |
+
dim_out (:obj:`int`): The number of channels in the output.
|
325 |
+
"""
|
326 |
+
|
327 |
+
def __init__(self, dim_in: int, dim_out: int):
|
328 |
+
super().__init__()
|
329 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
330 |
+
|
331 |
+
def forward(self, x):
|
332 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
333 |
+
return x * F.gelu(gate)
|
my_diffusers/models/embeddings.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import math
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
|
21 |
+
def get_timestep_embedding(
|
22 |
+
timesteps: torch.Tensor,
|
23 |
+
embedding_dim: int,
|
24 |
+
flip_sin_to_cos: bool = False,
|
25 |
+
downscale_freq_shift: float = 1,
|
26 |
+
scale: float = 1,
|
27 |
+
max_period: int = 10000,
|
28 |
+
):
|
29 |
+
# print(timesteps)
|
30 |
+
"""
|
31 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
32 |
+
|
33 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
34 |
+
These may be fractional.
|
35 |
+
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
|
36 |
+
embeddings. :return: an [N x dim] Tensor of positional embeddings.
|
37 |
+
"""
|
38 |
+
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
39 |
+
|
40 |
+
half_dim = embedding_dim // 2
|
41 |
+
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float64)
|
42 |
+
exponent = exponent / (half_dim - downscale_freq_shift)
|
43 |
+
|
44 |
+
emb = torch.exp(exponent).to(device=timesteps.device)
|
45 |
+
emb = timesteps[:, None].double() * emb[None, :]
|
46 |
+
|
47 |
+
# scale embeddings
|
48 |
+
emb = scale * emb
|
49 |
+
|
50 |
+
# concat sine and cosine embeddings
|
51 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
52 |
+
|
53 |
+
# flip sine and cosine embeddings
|
54 |
+
if flip_sin_to_cos:
|
55 |
+
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
56 |
+
|
57 |
+
# zero pad
|
58 |
+
if embedding_dim % 2 == 1:
|
59 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
60 |
+
return emb
|
61 |
+
|
62 |
+
|
63 |
+
class TimestepEmbedding(nn.Module):
|
64 |
+
def __init__(self, channel: int, time_embed_dim: int, act_fn: str = "silu"):
|
65 |
+
super().__init__()
|
66 |
+
|
67 |
+
self.linear_1 = nn.Linear(channel, time_embed_dim)
|
68 |
+
self.act = None
|
69 |
+
if act_fn == "silu":
|
70 |
+
self.act = nn.SiLU()
|
71 |
+
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim)
|
72 |
+
|
73 |
+
def forward(self, sample):
|
74 |
+
sample = self.linear_1(sample)
|
75 |
+
|
76 |
+
if self.act is not None:
|
77 |
+
sample = self.act(sample)
|
78 |
+
|
79 |
+
sample = self.linear_2(sample)
|
80 |
+
return sample
|
81 |
+
|
82 |
+
|
83 |
+
class Timesteps(nn.Module):
|
84 |
+
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
|
85 |
+
super().__init__()
|
86 |
+
self.num_channels = num_channels
|
87 |
+
self.flip_sin_to_cos = flip_sin_to_cos
|
88 |
+
self.downscale_freq_shift = downscale_freq_shift
|
89 |
+
|
90 |
+
def forward(self, timesteps):
|
91 |
+
t_emb = get_timestep_embedding(
|
92 |
+
timesteps,
|
93 |
+
self.num_channels,
|
94 |
+
flip_sin_to_cos=self.flip_sin_to_cos,
|
95 |
+
downscale_freq_shift=self.downscale_freq_shift,
|
96 |
+
)
|
97 |
+
return t_emb
|
98 |
+
|
99 |
+
|
100 |
+
class GaussianFourierProjection(nn.Module):
|
101 |
+
"""Gaussian Fourier embeddings for noise levels."""
|
102 |
+
|
103 |
+
def __init__(self, embedding_size: int = 256, scale: float = 1.0):
|
104 |
+
super().__init__()
|
105 |
+
self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
|
106 |
+
|
107 |
+
# to delete later
|
108 |
+
self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
|
109 |
+
|
110 |
+
self.weight = self.W
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
x = torch.log(x)
|
114 |
+
x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi
|
115 |
+
out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
|
116 |
+
return out
|
my_diffusers/models/resnet.py
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class Upsample2D(nn.Module):
|
10 |
+
"""
|
11 |
+
An upsampling layer with an optional convolution.
|
12 |
+
|
13 |
+
:param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
|
14 |
+
applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
15 |
+
upsampling occurs in the inner-two dimensions.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
19 |
+
super().__init__()
|
20 |
+
self.channels = channels
|
21 |
+
self.out_channels = out_channels or channels
|
22 |
+
self.use_conv = use_conv
|
23 |
+
self.use_conv_transpose = use_conv_transpose
|
24 |
+
self.name = name
|
25 |
+
|
26 |
+
conv = None
|
27 |
+
if use_conv_transpose:
|
28 |
+
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
|
29 |
+
elif use_conv:
|
30 |
+
conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
|
31 |
+
|
32 |
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
33 |
+
if name == "conv":
|
34 |
+
self.conv = conv
|
35 |
+
else:
|
36 |
+
self.Conv2d_0 = conv
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
assert x.shape[1] == self.channels
|
40 |
+
if self.use_conv_transpose:
|
41 |
+
return self.conv(x)
|
42 |
+
|
43 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
44 |
+
|
45 |
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
46 |
+
if self.use_conv:
|
47 |
+
if self.name == "conv":
|
48 |
+
x = self.conv(x)
|
49 |
+
else:
|
50 |
+
x = self.Conv2d_0(x)
|
51 |
+
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
class Downsample2D(nn.Module):
|
56 |
+
"""
|
57 |
+
A downsampling layer with an optional convolution.
|
58 |
+
|
59 |
+
:param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
|
60 |
+
applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
61 |
+
downsampling occurs in the inner-two dimensions.
|
62 |
+
"""
|
63 |
+
|
64 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
65 |
+
super().__init__()
|
66 |
+
self.channels = channels
|
67 |
+
self.out_channels = out_channels or channels
|
68 |
+
self.use_conv = use_conv
|
69 |
+
self.padding = padding
|
70 |
+
stride = 2
|
71 |
+
self.name = name
|
72 |
+
|
73 |
+
if use_conv:
|
74 |
+
conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
75 |
+
else:
|
76 |
+
assert self.channels == self.out_channels
|
77 |
+
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
|
78 |
+
|
79 |
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
80 |
+
if name == "conv":
|
81 |
+
self.Conv2d_0 = conv
|
82 |
+
self.conv = conv
|
83 |
+
elif name == "Conv2d_0":
|
84 |
+
self.conv = conv
|
85 |
+
else:
|
86 |
+
self.conv = conv
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
assert x.shape[1] == self.channels
|
90 |
+
if self.use_conv and self.padding == 0:
|
91 |
+
pad = (0, 1, 0, 1)
|
92 |
+
x = F.pad(x, pad, mode="constant", value=0)
|
93 |
+
|
94 |
+
assert x.shape[1] == self.channels
|
95 |
+
x = self.conv(x)
|
96 |
+
|
97 |
+
return x
|
98 |
+
|
99 |
+
|
100 |
+
class FirUpsample2D(nn.Module):
|
101 |
+
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
|
102 |
+
super().__init__()
|
103 |
+
out_channels = out_channels if out_channels else channels
|
104 |
+
if use_conv:
|
105 |
+
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
|
106 |
+
self.use_conv = use_conv
|
107 |
+
self.fir_kernel = fir_kernel
|
108 |
+
self.out_channels = out_channels
|
109 |
+
|
110 |
+
def _upsample_2d(self, x, weight=None, kernel=None, factor=2, gain=1):
|
111 |
+
"""Fused `upsample_2d()` followed by `Conv2d()`.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
|
115 |
+
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary:
|
116 |
+
order.
|
117 |
+
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
|
118 |
+
C]`.
|
119 |
+
weight: Weight tensor of the shape `[filterH, filterW, inChannels,
|
120 |
+
outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
|
121 |
+
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
|
122 |
+
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
|
123 |
+
factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as
|
127 |
+
`x`.
|
128 |
+
"""
|
129 |
+
|
130 |
+
assert isinstance(factor, int) and factor >= 1
|
131 |
+
|
132 |
+
# Setup filter kernel.
|
133 |
+
if kernel is None:
|
134 |
+
kernel = [1] * factor
|
135 |
+
|
136 |
+
# setup kernel
|
137 |
+
kernel = np.asarray(kernel, dtype=np.float64)
|
138 |
+
if kernel.ndim == 1:
|
139 |
+
kernel = np.outer(kernel, kernel)
|
140 |
+
kernel /= np.sum(kernel)
|
141 |
+
|
142 |
+
kernel = kernel * (gain * (factor**2))
|
143 |
+
|
144 |
+
if self.use_conv:
|
145 |
+
convH = weight.shape[2]
|
146 |
+
convW = weight.shape[3]
|
147 |
+
inC = weight.shape[1]
|
148 |
+
|
149 |
+
p = (kernel.shape[0] - factor) - (convW - 1)
|
150 |
+
|
151 |
+
stride = (factor, factor)
|
152 |
+
# Determine data dimensions.
|
153 |
+
stride = [1, 1, factor, factor]
|
154 |
+
output_shape = ((x.shape[2] - 1) * factor + convH, (x.shape[3] - 1) * factor + convW)
|
155 |
+
output_padding = (
|
156 |
+
output_shape[0] - (x.shape[2] - 1) * stride[0] - convH,
|
157 |
+
output_shape[1] - (x.shape[3] - 1) * stride[1] - convW,
|
158 |
+
)
|
159 |
+
assert output_padding[0] >= 0 and output_padding[1] >= 0
|
160 |
+
inC = weight.shape[1]
|
161 |
+
num_groups = x.shape[1] // inC
|
162 |
+
|
163 |
+
# Transpose weights.
|
164 |
+
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW))
|
165 |
+
weight = weight[..., ::-1, ::-1].permute(0, 2, 1, 3, 4)
|
166 |
+
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW))
|
167 |
+
|
168 |
+
x = F.conv_transpose2d(x, weight, stride=stride, output_padding=output_padding, padding=0)
|
169 |
+
|
170 |
+
x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), pad=((p + 1) // 2 + factor - 1, p // 2 + 1))
|
171 |
+
else:
|
172 |
+
p = kernel.shape[0] - factor
|
173 |
+
x = upfirdn2d_native(
|
174 |
+
x, torch.tensor(kernel, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)
|
175 |
+
)
|
176 |
+
|
177 |
+
return x
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
if self.use_conv:
|
181 |
+
height = self._upsample_2d(x, self.Conv2d_0.weight, kernel=self.fir_kernel)
|
182 |
+
height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
|
183 |
+
else:
|
184 |
+
height = self._upsample_2d(x, kernel=self.fir_kernel, factor=2)
|
185 |
+
|
186 |
+
return height
|
187 |
+
|
188 |
+
|
189 |
+
class FirDownsample2D(nn.Module):
|
190 |
+
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
|
191 |
+
super().__init__()
|
192 |
+
out_channels = out_channels if out_channels else channels
|
193 |
+
if use_conv:
|
194 |
+
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
|
195 |
+
self.fir_kernel = fir_kernel
|
196 |
+
self.use_conv = use_conv
|
197 |
+
self.out_channels = out_channels
|
198 |
+
|
199 |
+
def _downsample_2d(self, x, weight=None, kernel=None, factor=2, gain=1):
|
200 |
+
"""Fused `Conv2d()` followed by `downsample_2d()`.
|
201 |
+
|
202 |
+
Args:
|
203 |
+
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
|
204 |
+
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary:
|
205 |
+
order.
|
206 |
+
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH,
|
207 |
+
filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] //
|
208 |
+
numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] *
|
209 |
+
factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain:
|
210 |
+
Scaling factor for signal magnitude (default: 1.0).
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same
|
214 |
+
datatype as `x`.
|
215 |
+
"""
|
216 |
+
|
217 |
+
assert isinstance(factor, int) and factor >= 1
|
218 |
+
if kernel is None:
|
219 |
+
kernel = [1] * factor
|
220 |
+
|
221 |
+
# setup kernel
|
222 |
+
kernel = np.asarray(kernel, dtype=np.float64)
|
223 |
+
if kernel.ndim == 1:
|
224 |
+
kernel = np.outer(kernel, kernel)
|
225 |
+
kernel /= np.sum(kernel)
|
226 |
+
|
227 |
+
kernel = kernel * gain
|
228 |
+
|
229 |
+
if self.use_conv:
|
230 |
+
_, _, convH, convW = weight.shape
|
231 |
+
p = (kernel.shape[0] - factor) + (convW - 1)
|
232 |
+
s = [factor, factor]
|
233 |
+
x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), pad=((p + 1) // 2, p // 2))
|
234 |
+
x = F.conv2d(x, weight, stride=s, padding=0)
|
235 |
+
else:
|
236 |
+
p = kernel.shape[0] - factor
|
237 |
+
x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))
|
238 |
+
|
239 |
+
return x
|
240 |
+
|
241 |
+
def forward(self, x):
|
242 |
+
if self.use_conv:
|
243 |
+
x = self._downsample_2d(x, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
|
244 |
+
x = x + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
|
245 |
+
else:
|
246 |
+
x = self._downsample_2d(x, kernel=self.fir_kernel, factor=2)
|
247 |
+
|
248 |
+
return x
|
249 |
+
|
250 |
+
|
251 |
+
class ResnetBlock2D(nn.Module):
|
252 |
+
def __init__(
|
253 |
+
self,
|
254 |
+
*,
|
255 |
+
in_channels,
|
256 |
+
out_channels=None,
|
257 |
+
conv_shortcut=False,
|
258 |
+
dropout=0.0,
|
259 |
+
temb_channels=512,
|
260 |
+
groups=32,
|
261 |
+
groups_out=None,
|
262 |
+
pre_norm=True,
|
263 |
+
eps=1e-6,
|
264 |
+
non_linearity="swish",
|
265 |
+
time_embedding_norm="default",
|
266 |
+
kernel=None,
|
267 |
+
output_scale_factor=1.0,
|
268 |
+
use_nin_shortcut=None,
|
269 |
+
up=False,
|
270 |
+
down=False,
|
271 |
+
):
|
272 |
+
super().__init__()
|
273 |
+
self.pre_norm = pre_norm
|
274 |
+
self.pre_norm = True
|
275 |
+
self.in_channels = in_channels
|
276 |
+
out_channels = in_channels if out_channels is None else out_channels
|
277 |
+
self.out_channels = out_channels
|
278 |
+
self.use_conv_shortcut = conv_shortcut
|
279 |
+
self.time_embedding_norm = time_embedding_norm
|
280 |
+
self.up = up
|
281 |
+
self.down = down
|
282 |
+
self.output_scale_factor = output_scale_factor
|
283 |
+
|
284 |
+
if groups_out is None:
|
285 |
+
groups_out = groups
|
286 |
+
|
287 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
288 |
+
|
289 |
+
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
290 |
+
|
291 |
+
if temb_channels is not None:
|
292 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
|
293 |
+
else:
|
294 |
+
self.time_emb_proj = None
|
295 |
+
|
296 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
297 |
+
self.dropout = torch.nn.Dropout(dropout)
|
298 |
+
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
299 |
+
|
300 |
+
if non_linearity == "swish":
|
301 |
+
self.nonlinearity = lambda x: F.silu(x)
|
302 |
+
elif non_linearity == "mish":
|
303 |
+
self.nonlinearity = Mish()
|
304 |
+
elif non_linearity == "silu":
|
305 |
+
self.nonlinearity = nn.SiLU()
|
306 |
+
|
307 |
+
self.upsample = self.downsample = None
|
308 |
+
if self.up:
|
309 |
+
if kernel == "fir":
|
310 |
+
fir_kernel = (1, 3, 3, 1)
|
311 |
+
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
|
312 |
+
elif kernel == "sde_vp":
|
313 |
+
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
|
314 |
+
else:
|
315 |
+
self.upsample = Upsample2D(in_channels, use_conv=False)
|
316 |
+
elif self.down:
|
317 |
+
if kernel == "fir":
|
318 |
+
fir_kernel = (1, 3, 3, 1)
|
319 |
+
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
|
320 |
+
elif kernel == "sde_vp":
|
321 |
+
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
|
322 |
+
else:
|
323 |
+
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
|
324 |
+
|
325 |
+
self.use_nin_shortcut = self.in_channels != self.out_channels if use_nin_shortcut is None else use_nin_shortcut
|
326 |
+
|
327 |
+
self.conv_shortcut = None
|
328 |
+
if self.use_nin_shortcut:
|
329 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
330 |
+
|
331 |
+
def forward(self, x, temb):
|
332 |
+
hidden_states = x
|
333 |
+
|
334 |
+
# make sure hidden states is in float32
|
335 |
+
# when running in half-precision
|
336 |
+
hidden_states = self.norm1(hidden_states.double()).type(hidden_states.dtype)
|
337 |
+
hidden_states = self.nonlinearity(hidden_states)
|
338 |
+
|
339 |
+
if self.upsample is not None:
|
340 |
+
x = self.upsample(x)
|
341 |
+
hidden_states = self.upsample(hidden_states)
|
342 |
+
elif self.downsample is not None:
|
343 |
+
x = self.downsample(x)
|
344 |
+
hidden_states = self.downsample(hidden_states)
|
345 |
+
|
346 |
+
hidden_states = self.conv1(hidden_states)
|
347 |
+
|
348 |
+
if temb is not None:
|
349 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
|
350 |
+
hidden_states = hidden_states + temb
|
351 |
+
|
352 |
+
# make sure hidden states is in float32
|
353 |
+
# when running in half-precision
|
354 |
+
hidden_states = self.norm2(hidden_states.double()).type(hidden_states.dtype)
|
355 |
+
hidden_states = self.nonlinearity(hidden_states)
|
356 |
+
|
357 |
+
hidden_states = self.dropout(hidden_states)
|
358 |
+
hidden_states = self.conv2(hidden_states)
|
359 |
+
|
360 |
+
if self.conv_shortcut is not None:
|
361 |
+
x = self.conv_shortcut(x)
|
362 |
+
|
363 |
+
out = (x + hidden_states) / self.output_scale_factor
|
364 |
+
|
365 |
+
return out
|
366 |
+
|
367 |
+
|
368 |
+
class Mish(torch.nn.Module):
|
369 |
+
def forward(self, x):
|
370 |
+
return x * torch.tanh(torch.nn.functional.softplus(x))
|
371 |
+
|
372 |
+
|
373 |
+
def upsample_2d(x, kernel=None, factor=2, gain=1):
|
374 |
+
r"""Upsample2D a batch of 2D images with the given filter.
|
375 |
+
|
376 |
+
Args:
|
377 |
+
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
|
378 |
+
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
|
379 |
+
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
|
380 |
+
multiple of the upsampling factor.
|
381 |
+
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
|
382 |
+
C]`.
|
383 |
+
k: FIR filter of the shape `[firH, firW]` or `[firN]`
|
384 |
+
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
|
385 |
+
factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).
|
386 |
+
|
387 |
+
Returns:
|
388 |
+
Tensor of the shape `[N, C, H * factor, W * factor]`
|
389 |
+
"""
|
390 |
+
assert isinstance(factor, int) and factor >= 1
|
391 |
+
if kernel is None:
|
392 |
+
kernel = [1] * factor
|
393 |
+
|
394 |
+
kernel = np.asarray(kernel, dtype=np.float64)
|
395 |
+
if kernel.ndim == 1:
|
396 |
+
kernel = np.outer(kernel, kernel)
|
397 |
+
kernel /= np.sum(kernel)
|
398 |
+
|
399 |
+
kernel = kernel * (gain * (factor**2))
|
400 |
+
p = kernel.shape[0] - factor
|
401 |
+
return upfirdn2d_native(
|
402 |
+
x, torch.tensor(kernel, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)
|
403 |
+
)
|
404 |
+
|
405 |
+
|
406 |
+
def downsample_2d(x, kernel=None, factor=2, gain=1):
|
407 |
+
r"""Downsample2D a batch of 2D images with the given filter.
|
408 |
+
|
409 |
+
Args:
|
410 |
+
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
|
411 |
+
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
|
412 |
+
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
|
413 |
+
shape is a multiple of the downsampling factor.
|
414 |
+
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
|
415 |
+
C]`.
|
416 |
+
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
|
417 |
+
(separable). The default is `[1] * factor`, which corresponds to average pooling.
|
418 |
+
factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).
|
419 |
+
|
420 |
+
Returns:
|
421 |
+
Tensor of the shape `[N, C, H // factor, W // factor]`
|
422 |
+
"""
|
423 |
+
|
424 |
+
assert isinstance(factor, int) and factor >= 1
|
425 |
+
if kernel is None:
|
426 |
+
kernel = [1] * factor
|
427 |
+
|
428 |
+
kernel = np.asarray(kernel, dtype=np.float64)
|
429 |
+
if kernel.ndim == 1:
|
430 |
+
kernel = np.outer(kernel, kernel)
|
431 |
+
kernel /= np.sum(kernel)
|
432 |
+
|
433 |
+
kernel = kernel * gain
|
434 |
+
p = kernel.shape[0] - factor
|
435 |
+
return upfirdn2d_native(x, torch.tensor(kernel, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))
|
436 |
+
|
437 |
+
|
438 |
+
def upfirdn2d_native(input, kernel, up=1, down=1, pad=(0, 0)):
|
439 |
+
up_x = up_y = up
|
440 |
+
down_x = down_y = down
|
441 |
+
pad_x0 = pad_y0 = pad[0]
|
442 |
+
pad_x1 = pad_y1 = pad[1]
|
443 |
+
|
444 |
+
_, channel, in_h, in_w = input.shape
|
445 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
446 |
+
|
447 |
+
_, in_h, in_w, minor = input.shape
|
448 |
+
kernel_h, kernel_w = kernel.shape
|
449 |
+
|
450 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
451 |
+
|
452 |
+
# Temporary workaround for mps specific issue: https://github.com/pytorch/pytorch/issues/84535
|
453 |
+
if input.device.type == "mps":
|
454 |
+
out = out.to("cpu")
|
455 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
456 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
457 |
+
|
458 |
+
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
|
459 |
+
out = out.to(input.device) # Move back to mps if necessary
|
460 |
+
out = out[
|
461 |
+
:,
|
462 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
463 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
464 |
+
:,
|
465 |
+
]
|
466 |
+
|
467 |
+
out = out.permute(0, 3, 1, 2)
|
468 |
+
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
469 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
470 |
+
out = F.conv2d(out, w)
|
471 |
+
out = out.reshape(
|
472 |
+
-1,
|
473 |
+
minor,
|
474 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
475 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
476 |
+
)
|
477 |
+
out = out.permute(0, 2, 3, 1)
|
478 |
+
out = out[:, ::down_y, ::down_x, :]
|
479 |
+
|
480 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
481 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
482 |
+
|
483 |
+
return out.view(-1, channel, out_h, out_w)
|
my_diffusers/models/unet_2d.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from ..configuration_utils import ConfigMixin, register_to_config
|
8 |
+
from ..modeling_utils import ModelMixin
|
9 |
+
from ..utils import BaseOutput
|
10 |
+
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
|
11 |
+
from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block
|
12 |
+
|
13 |
+
|
14 |
+
@dataclass
|
15 |
+
class UNet2DOutput(BaseOutput):
|
16 |
+
"""
|
17 |
+
Args:
|
18 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
19 |
+
Hidden states output. Output of last layer of model.
|
20 |
+
"""
|
21 |
+
|
22 |
+
sample: torch.DoubleTensor
|
23 |
+
|
24 |
+
|
25 |
+
class UNet2DModel(ModelMixin, ConfigMixin):
|
26 |
+
r"""
|
27 |
+
UNet2DModel is a 2D UNet model that takes in a noisy sample and a timestep and returns sample shaped output.
|
28 |
+
|
29 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
|
30 |
+
implements for all the model (such as downloading or saving, etc.)
|
31 |
+
|
32 |
+
Parameters:
|
33 |
+
sample_size (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
|
34 |
+
Input sample size.
|
35 |
+
in_channels (`int`, *optional*, defaults to 3): Number of channels in the input image.
|
36 |
+
out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
|
37 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
38 |
+
time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use.
|
39 |
+
freq_shift (`int`, *optional*, defaults to 0): Frequency shift for fourier time embedding.
|
40 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to :
|
41 |
+
obj:`False`): Whether to flip sin to cos for fourier time embedding.
|
42 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to :
|
43 |
+
obj:`("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`): Tuple of downsample block
|
44 |
+
types.
|
45 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to :
|
46 |
+
obj:`("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`): Tuple of upsample block types.
|
47 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to :
|
48 |
+
obj:`(224, 448, 672, 896)`): Tuple of block output channels.
|
49 |
+
layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block.
|
50 |
+
mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block.
|
51 |
+
downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution.
|
52 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
53 |
+
attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension.
|
54 |
+
norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for the normalization.
|
55 |
+
norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for the normalization.
|
56 |
+
"""
|
57 |
+
|
58 |
+
@register_to_config
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
sample_size: Optional[int] = None,
|
62 |
+
in_channels: int = 3,
|
63 |
+
out_channels: int = 3,
|
64 |
+
center_input_sample: bool = False,
|
65 |
+
time_embedding_type: str = "positional",
|
66 |
+
freq_shift: int = 0,
|
67 |
+
flip_sin_to_cos: bool = True,
|
68 |
+
down_block_types: Tuple[str] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
|
69 |
+
up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"),
|
70 |
+
block_out_channels: Tuple[int] = (224, 448, 672, 896),
|
71 |
+
layers_per_block: int = 2,
|
72 |
+
mid_block_scale_factor = 1,
|
73 |
+
downsample_padding: int = 1,
|
74 |
+
act_fn: str = "silu",
|
75 |
+
attention_head_dim: int = 8,
|
76 |
+
norm_num_groups: int = 32,
|
77 |
+
norm_eps = 1e-5,
|
78 |
+
):
|
79 |
+
super().__init__()
|
80 |
+
|
81 |
+
self.sample_size = sample_size
|
82 |
+
time_embed_dim = block_out_channels[0] * 4
|
83 |
+
|
84 |
+
# input
|
85 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
86 |
+
|
87 |
+
# time
|
88 |
+
if time_embedding_type == "fourier":
|
89 |
+
self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16)
|
90 |
+
timestep_input_dim = 2 * block_out_channels[0]
|
91 |
+
elif time_embedding_type == "positional":
|
92 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
93 |
+
timestep_input_dim = block_out_channels[0]
|
94 |
+
|
95 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
96 |
+
|
97 |
+
self.down_blocks = nn.ModuleList([])
|
98 |
+
self.mid_block = None
|
99 |
+
self.up_blocks = nn.ModuleList([])
|
100 |
+
|
101 |
+
# down
|
102 |
+
output_channel = block_out_channels[0]
|
103 |
+
for i, down_block_type in enumerate(down_block_types):
|
104 |
+
input_channel = output_channel
|
105 |
+
output_channel = block_out_channels[i]
|
106 |
+
is_final_block = i == len(block_out_channels) - 1
|
107 |
+
|
108 |
+
down_block = get_down_block(
|
109 |
+
down_block_type,
|
110 |
+
num_layers=layers_per_block,
|
111 |
+
in_channels=input_channel,
|
112 |
+
out_channels=output_channel,
|
113 |
+
temb_channels=time_embed_dim,
|
114 |
+
add_downsample=not is_final_block,
|
115 |
+
resnet_eps=norm_eps,
|
116 |
+
resnet_act_fn=act_fn,
|
117 |
+
attn_num_head_channels=attention_head_dim,
|
118 |
+
downsample_padding=downsample_padding,
|
119 |
+
)
|
120 |
+
self.down_blocks.append(down_block)
|
121 |
+
|
122 |
+
# mid
|
123 |
+
self.mid_block = UNetMidBlock2D(
|
124 |
+
in_channels=block_out_channels[-1],
|
125 |
+
temb_channels=time_embed_dim,
|
126 |
+
resnet_eps=norm_eps,
|
127 |
+
resnet_act_fn=act_fn,
|
128 |
+
output_scale_factor=mid_block_scale_factor,
|
129 |
+
resnet_time_scale_shift="default",
|
130 |
+
attn_num_head_channels=attention_head_dim,
|
131 |
+
resnet_groups=norm_num_groups,
|
132 |
+
)
|
133 |
+
|
134 |
+
# up
|
135 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
136 |
+
output_channel = reversed_block_out_channels[0]
|
137 |
+
for i, up_block_type in enumerate(up_block_types):
|
138 |
+
prev_output_channel = output_channel
|
139 |
+
output_channel = reversed_block_out_channels[i]
|
140 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
141 |
+
|
142 |
+
is_final_block = i == len(block_out_channels) - 1
|
143 |
+
|
144 |
+
up_block = get_up_block(
|
145 |
+
up_block_type,
|
146 |
+
num_layers=layers_per_block + 1,
|
147 |
+
in_channels=input_channel,
|
148 |
+
out_channels=output_channel,
|
149 |
+
prev_output_channel=prev_output_channel,
|
150 |
+
temb_channels=time_embed_dim,
|
151 |
+
add_upsample=not is_final_block,
|
152 |
+
resnet_eps=norm_eps,
|
153 |
+
resnet_act_fn=act_fn,
|
154 |
+
attn_num_head_channels=attention_head_dim,
|
155 |
+
)
|
156 |
+
self.up_blocks.append(up_block)
|
157 |
+
prev_output_channel = output_channel
|
158 |
+
|
159 |
+
# out
|
160 |
+
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
|
161 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps)
|
162 |
+
self.conv_act = nn.SiLU()
|
163 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
164 |
+
|
165 |
+
def forward(
|
166 |
+
self,
|
167 |
+
sample: torch.DoubleTensor,
|
168 |
+
timestep: Union[torch.Tensor, float, int],
|
169 |
+
return_dict: bool = True,
|
170 |
+
) -> Union[UNet2DOutput, Tuple]:
|
171 |
+
"""r
|
172 |
+
Args:
|
173 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
174 |
+
timestep (`torch.FloatTensor` or `float` or `int): (batch) timesteps
|
175 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
176 |
+
Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
[`~models.unet_2d.UNet2DOutput`] or `tuple`: [`~models.unet_2d.UNet2DOutput`] if `return_dict` is True,
|
180 |
+
otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
|
181 |
+
"""
|
182 |
+
# 0. center input if necessary
|
183 |
+
if self.config.center_input_sample:
|
184 |
+
sample = 2 * sample - 1.0
|
185 |
+
|
186 |
+
# 1. time
|
187 |
+
timesteps = timestep
|
188 |
+
if not torch.is_tensor(timesteps):
|
189 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
190 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
191 |
+
timesteps = timesteps[None].to(sample.device)
|
192 |
+
|
193 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
194 |
+
timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)
|
195 |
+
|
196 |
+
t_emb = self.time_proj(timesteps)
|
197 |
+
emb = self.time_embedding(t_emb)
|
198 |
+
|
199 |
+
# 2. pre-process
|
200 |
+
skip_sample = sample
|
201 |
+
sample = self.conv_in(sample)
|
202 |
+
|
203 |
+
# 3. down
|
204 |
+
down_block_res_samples = (sample,)
|
205 |
+
for downsample_block in self.down_blocks:
|
206 |
+
if hasattr(downsample_block, "skip_conv"):
|
207 |
+
sample, res_samples, skip_sample = downsample_block(
|
208 |
+
hidden_states=sample, temb=emb, skip_sample=skip_sample
|
209 |
+
)
|
210 |
+
else:
|
211 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
212 |
+
|
213 |
+
down_block_res_samples += res_samples
|
214 |
+
|
215 |
+
# 4. mid
|
216 |
+
sample = self.mid_block(sample, emb)
|
217 |
+
|
218 |
+
# 5. up
|
219 |
+
skip_sample = None
|
220 |
+
for upsample_block in self.up_blocks:
|
221 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
222 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
223 |
+
|
224 |
+
if hasattr(upsample_block, "skip_conv"):
|
225 |
+
sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
|
226 |
+
else:
|
227 |
+
sample = upsample_block(sample, res_samples, emb)
|
228 |
+
|
229 |
+
# 6. post-process
|
230 |
+
# make sure hidden states is in float32
|
231 |
+
# when running in half-precision
|
232 |
+
sample = self.conv_norm_out(sample.double()).type(sample.dtype)
|
233 |
+
sample = self.conv_act(sample)
|
234 |
+
sample = self.conv_out(sample)
|
235 |
+
|
236 |
+
if skip_sample is not None:
|
237 |
+
sample += skip_sample
|
238 |
+
|
239 |
+
if self.config.time_embedding_type == "fourier":
|
240 |
+
timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
|
241 |
+
sample = sample / timesteps
|
242 |
+
|
243 |
+
if not return_dict:
|
244 |
+
return (sample,)
|
245 |
+
|
246 |
+
return UNet2DOutput(sample=sample)
|
my_diffusers/models/unet_2d_condition.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from ..configuration_utils import ConfigMixin, register_to_config
|
8 |
+
from ..modeling_utils import ModelMixin
|
9 |
+
from ..utils import BaseOutput
|
10 |
+
from .embeddings import TimestepEmbedding, Timesteps
|
11 |
+
from .unet_blocks import UNetMidBlock2DCrossAttn, get_down_block, get_up_block
|
12 |
+
|
13 |
+
|
14 |
+
@dataclass
|
15 |
+
class UNet2DConditionOutput(BaseOutput):
|
16 |
+
"""
|
17 |
+
Args:
|
18 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
19 |
+
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
20 |
+
"""
|
21 |
+
|
22 |
+
sample: torch.FloatTensor
|
23 |
+
|
24 |
+
|
25 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
26 |
+
r"""
|
27 |
+
UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
|
28 |
+
and returns sample shaped output.
|
29 |
+
|
30 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
|
31 |
+
implements for all the model (such as downloading or saving, etc.)
|
32 |
+
|
33 |
+
Parameters:
|
34 |
+
sample_size (`int`, *optional*): The size of the input sample.
|
35 |
+
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
|
36 |
+
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
|
37 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
38 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
39 |
+
Whether to flip the sin to cos in the time embedding.
|
40 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
41 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
42 |
+
The tuple of downsample blocks to use.
|
43 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
|
44 |
+
The tuple of upsample blocks to use.
|
45 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
46 |
+
The tuple of output channels for each block.
|
47 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
48 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
49 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
50 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
51 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
52 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
53 |
+
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
|
54 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
55 |
+
"""
|
56 |
+
|
57 |
+
@register_to_config
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
sample_size: Optional[int] = None,
|
61 |
+
in_channels: int = 4,
|
62 |
+
out_channels: int = 4,
|
63 |
+
center_input_sample: bool = False,
|
64 |
+
flip_sin_to_cos: bool = True,
|
65 |
+
freq_shift: int = 0,
|
66 |
+
down_block_types: Tuple[str] = (
|
67 |
+
"CrossAttnDownBlock2D",
|
68 |
+
"CrossAttnDownBlock2D",
|
69 |
+
"CrossAttnDownBlock2D",
|
70 |
+
"DownBlock2D",
|
71 |
+
),
|
72 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
73 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
74 |
+
layers_per_block: int = 2,
|
75 |
+
downsample_padding: int = 1,
|
76 |
+
mid_block_scale_factor: float = 1,
|
77 |
+
act_fn: str = "silu",
|
78 |
+
norm_num_groups: int = 32,
|
79 |
+
norm_eps: float = 1e-5,
|
80 |
+
cross_attention_dim: int = 1280,
|
81 |
+
attention_head_dim: int = 8,
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.sample_size = sample_size
|
86 |
+
time_embed_dim = block_out_channels[0] * 4
|
87 |
+
|
88 |
+
# input
|
89 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
90 |
+
|
91 |
+
# time
|
92 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
93 |
+
timestep_input_dim = block_out_channels[0]
|
94 |
+
|
95 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
96 |
+
|
97 |
+
self.down_blocks = nn.ModuleList([])
|
98 |
+
self.mid_block = None
|
99 |
+
self.up_blocks = nn.ModuleList([])
|
100 |
+
|
101 |
+
# down
|
102 |
+
output_channel = block_out_channels[0]
|
103 |
+
for i, down_block_type in enumerate(down_block_types):
|
104 |
+
input_channel = output_channel
|
105 |
+
output_channel = block_out_channels[i]
|
106 |
+
is_final_block = i == len(block_out_channels) - 1
|
107 |
+
|
108 |
+
down_block = get_down_block(
|
109 |
+
down_block_type,
|
110 |
+
num_layers=layers_per_block,
|
111 |
+
in_channels=input_channel,
|
112 |
+
out_channels=output_channel,
|
113 |
+
temb_channels=time_embed_dim,
|
114 |
+
add_downsample=not is_final_block,
|
115 |
+
resnet_eps=norm_eps,
|
116 |
+
resnet_act_fn=act_fn,
|
117 |
+
cross_attention_dim=cross_attention_dim,
|
118 |
+
attn_num_head_channels=attention_head_dim,
|
119 |
+
downsample_padding=downsample_padding,
|
120 |
+
)
|
121 |
+
self.down_blocks.append(down_block)
|
122 |
+
|
123 |
+
# mid
|
124 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
125 |
+
in_channels=block_out_channels[-1],
|
126 |
+
temb_channels=time_embed_dim,
|
127 |
+
resnet_eps=norm_eps,
|
128 |
+
resnet_act_fn=act_fn,
|
129 |
+
output_scale_factor=mid_block_scale_factor,
|
130 |
+
resnet_time_scale_shift="default",
|
131 |
+
cross_attention_dim=cross_attention_dim,
|
132 |
+
attn_num_head_channels=attention_head_dim,
|
133 |
+
resnet_groups=norm_num_groups,
|
134 |
+
)
|
135 |
+
|
136 |
+
# up
|
137 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
138 |
+
output_channel = reversed_block_out_channels[0]
|
139 |
+
for i, up_block_type in enumerate(up_block_types):
|
140 |
+
prev_output_channel = output_channel
|
141 |
+
output_channel = reversed_block_out_channels[i]
|
142 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
143 |
+
|
144 |
+
is_final_block = i == len(block_out_channels) - 1
|
145 |
+
|
146 |
+
up_block = get_up_block(
|
147 |
+
up_block_type,
|
148 |
+
num_layers=layers_per_block + 1,
|
149 |
+
in_channels=input_channel,
|
150 |
+
out_channels=output_channel,
|
151 |
+
prev_output_channel=prev_output_channel,
|
152 |
+
temb_channels=time_embed_dim,
|
153 |
+
add_upsample=not is_final_block,
|
154 |
+
resnet_eps=norm_eps,
|
155 |
+
resnet_act_fn=act_fn,
|
156 |
+
cross_attention_dim=cross_attention_dim,
|
157 |
+
attn_num_head_channels=attention_head_dim,
|
158 |
+
)
|
159 |
+
self.up_blocks.append(up_block)
|
160 |
+
prev_output_channel = output_channel
|
161 |
+
|
162 |
+
# out
|
163 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
164 |
+
self.conv_act = nn.SiLU()
|
165 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
166 |
+
|
167 |
+
def set_attention_slice(self, slice_size):
|
168 |
+
if slice_size is not None and self.config.attention_head_dim % slice_size != 0:
|
169 |
+
raise ValueError(
|
170 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
171 |
+
f"the number of heads used in cross_attention {self.config.attention_head_dim}"
|
172 |
+
)
|
173 |
+
if slice_size is not None and slice_size > self.config.attention_head_dim:
|
174 |
+
raise ValueError(
|
175 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
176 |
+
f"the number of heads used in cross_attention {self.config.attention_head_dim}"
|
177 |
+
)
|
178 |
+
|
179 |
+
for block in self.down_blocks:
|
180 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
181 |
+
block.set_attention_slice(slice_size)
|
182 |
+
|
183 |
+
self.mid_block.set_attention_slice(slice_size)
|
184 |
+
|
185 |
+
for block in self.up_blocks:
|
186 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
187 |
+
block.set_attention_slice(slice_size)
|
188 |
+
|
189 |
+
def forward(
|
190 |
+
self,
|
191 |
+
sample: torch.FloatTensor,
|
192 |
+
timestep: Union[torch.Tensor, float, int],
|
193 |
+
encoder_hidden_states: torch.Tensor,
|
194 |
+
return_dict: bool = True,
|
195 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
196 |
+
"""r
|
197 |
+
Args:
|
198 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
199 |
+
timestep (`torch.FloatTensor` or `float` or `int): (batch) timesteps
|
200 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states
|
201 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
202 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
206 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
207 |
+
returning a tuple, the first element is the sample tensor.
|
208 |
+
"""
|
209 |
+
# 0. center input if necessary
|
210 |
+
if self.config.center_input_sample:
|
211 |
+
sample = 2 * sample - 1.0
|
212 |
+
|
213 |
+
# 1. time
|
214 |
+
timesteps = timestep
|
215 |
+
if not torch.is_tensor(timesteps):
|
216 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
217 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
218 |
+
timesteps = timesteps.to(dtype=torch.float64)
|
219 |
+
timesteps = timesteps[None].to(device=sample.device)
|
220 |
+
|
221 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
222 |
+
timesteps = timesteps.expand(sample.shape[0])
|
223 |
+
|
224 |
+
t_emb = self.time_proj(timesteps)
|
225 |
+
# print(t_emb.dtype)
|
226 |
+
t_emb = t_emb.to(sample.dtype).to(sample.device)
|
227 |
+
emb = self.time_embedding(t_emb)
|
228 |
+
|
229 |
+
# 2. pre-process
|
230 |
+
sample = self.conv_in(sample)
|
231 |
+
|
232 |
+
# 3. down
|
233 |
+
down_block_res_samples = (sample,)
|
234 |
+
for downsample_block in self.down_blocks:
|
235 |
+
if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None:
|
236 |
+
# print(sample.dtype, emb.dtype, encoder_hidden_states.dtype)
|
237 |
+
sample, res_samples = downsample_block(
|
238 |
+
hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
242 |
+
|
243 |
+
down_block_res_samples += res_samples
|
244 |
+
|
245 |
+
# 4. mid
|
246 |
+
sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)
|
247 |
+
|
248 |
+
# 5. up
|
249 |
+
for upsample_block in self.up_blocks:
|
250 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
251 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
252 |
+
|
253 |
+
if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None:
|
254 |
+
sample = upsample_block(
|
255 |
+
hidden_states=sample,
|
256 |
+
temb=emb,
|
257 |
+
res_hidden_states_tuple=res_samples,
|
258 |
+
encoder_hidden_states=encoder_hidden_states,
|
259 |
+
)
|
260 |
+
else:
|
261 |
+
sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples)
|
262 |
+
|
263 |
+
# 6. post-process
|
264 |
+
# make sure hidden states is in float32
|
265 |
+
# when running in half-precision
|
266 |
+
sample = self.conv_norm_out(sample.double()).type(sample.dtype)
|
267 |
+
sample = self.conv_act(sample)
|
268 |
+
sample = self.conv_out(sample)
|
269 |
+
|
270 |
+
if not return_dict:
|
271 |
+
return (sample,)
|
272 |
+
|
273 |
+
return UNet2DConditionOutput(sample=sample)
|
my_diffusers/models/unet_blocks.py
ADDED
@@ -0,0 +1,1481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
# limitations under the License.
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from .attention import AttentionBlock, SpatialTransformer
|
21 |
+
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
|
22 |
+
|
23 |
+
|
24 |
+
def get_down_block(
|
25 |
+
down_block_type,
|
26 |
+
num_layers,
|
27 |
+
in_channels,
|
28 |
+
out_channels,
|
29 |
+
temb_channels,
|
30 |
+
add_downsample,
|
31 |
+
resnet_eps,
|
32 |
+
resnet_act_fn,
|
33 |
+
attn_num_head_channels,
|
34 |
+
cross_attention_dim=None,
|
35 |
+
downsample_padding=None,
|
36 |
+
):
|
37 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
38 |
+
if down_block_type == "DownBlock2D":
|
39 |
+
return DownBlock2D(
|
40 |
+
num_layers=num_layers,
|
41 |
+
in_channels=in_channels,
|
42 |
+
out_channels=out_channels,
|
43 |
+
temb_channels=temb_channels,
|
44 |
+
add_downsample=add_downsample,
|
45 |
+
resnet_eps=resnet_eps,
|
46 |
+
resnet_act_fn=resnet_act_fn,
|
47 |
+
downsample_padding=downsample_padding,
|
48 |
+
)
|
49 |
+
elif down_block_type == "AttnDownBlock2D":
|
50 |
+
return AttnDownBlock2D(
|
51 |
+
num_layers=num_layers,
|
52 |
+
in_channels=in_channels,
|
53 |
+
out_channels=out_channels,
|
54 |
+
temb_channels=temb_channels,
|
55 |
+
add_downsample=add_downsample,
|
56 |
+
resnet_eps=resnet_eps,
|
57 |
+
resnet_act_fn=resnet_act_fn,
|
58 |
+
downsample_padding=downsample_padding,
|
59 |
+
attn_num_head_channels=attn_num_head_channels,
|
60 |
+
)
|
61 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
62 |
+
if cross_attention_dim is None:
|
63 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
64 |
+
return CrossAttnDownBlock2D(
|
65 |
+
num_layers=num_layers,
|
66 |
+
in_channels=in_channels,
|
67 |
+
out_channels=out_channels,
|
68 |
+
temb_channels=temb_channels,
|
69 |
+
add_downsample=add_downsample,
|
70 |
+
resnet_eps=resnet_eps,
|
71 |
+
resnet_act_fn=resnet_act_fn,
|
72 |
+
downsample_padding=downsample_padding,
|
73 |
+
cross_attention_dim=cross_attention_dim,
|
74 |
+
attn_num_head_channels=attn_num_head_channels,
|
75 |
+
)
|
76 |
+
elif down_block_type == "SkipDownBlock2D":
|
77 |
+
return SkipDownBlock2D(
|
78 |
+
num_layers=num_layers,
|
79 |
+
in_channels=in_channels,
|
80 |
+
out_channels=out_channels,
|
81 |
+
temb_channels=temb_channels,
|
82 |
+
add_downsample=add_downsample,
|
83 |
+
resnet_eps=resnet_eps,
|
84 |
+
resnet_act_fn=resnet_act_fn,
|
85 |
+
downsample_padding=downsample_padding,
|
86 |
+
)
|
87 |
+
elif down_block_type == "AttnSkipDownBlock2D":
|
88 |
+
return AttnSkipDownBlock2D(
|
89 |
+
num_layers=num_layers,
|
90 |
+
in_channels=in_channels,
|
91 |
+
out_channels=out_channels,
|
92 |
+
temb_channels=temb_channels,
|
93 |
+
add_downsample=add_downsample,
|
94 |
+
resnet_eps=resnet_eps,
|
95 |
+
resnet_act_fn=resnet_act_fn,
|
96 |
+
downsample_padding=downsample_padding,
|
97 |
+
attn_num_head_channels=attn_num_head_channels,
|
98 |
+
)
|
99 |
+
elif down_block_type == "DownEncoderBlock2D":
|
100 |
+
return DownEncoderBlock2D(
|
101 |
+
num_layers=num_layers,
|
102 |
+
in_channels=in_channels,
|
103 |
+
out_channels=out_channels,
|
104 |
+
add_downsample=add_downsample,
|
105 |
+
resnet_eps=resnet_eps,
|
106 |
+
resnet_act_fn=resnet_act_fn,
|
107 |
+
downsample_padding=downsample_padding,
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
def get_up_block(
|
112 |
+
up_block_type,
|
113 |
+
num_layers,
|
114 |
+
in_channels,
|
115 |
+
out_channels,
|
116 |
+
prev_output_channel,
|
117 |
+
temb_channels,
|
118 |
+
add_upsample,
|
119 |
+
resnet_eps,
|
120 |
+
resnet_act_fn,
|
121 |
+
attn_num_head_channels,
|
122 |
+
cross_attention_dim=None,
|
123 |
+
):
|
124 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
125 |
+
if up_block_type == "UpBlock2D":
|
126 |
+
return UpBlock2D(
|
127 |
+
num_layers=num_layers,
|
128 |
+
in_channels=in_channels,
|
129 |
+
out_channels=out_channels,
|
130 |
+
prev_output_channel=prev_output_channel,
|
131 |
+
temb_channels=temb_channels,
|
132 |
+
add_upsample=add_upsample,
|
133 |
+
resnet_eps=resnet_eps,
|
134 |
+
resnet_act_fn=resnet_act_fn,
|
135 |
+
)
|
136 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
137 |
+
if cross_attention_dim is None:
|
138 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
139 |
+
return CrossAttnUpBlock2D(
|
140 |
+
num_layers=num_layers,
|
141 |
+
in_channels=in_channels,
|
142 |
+
out_channels=out_channels,
|
143 |
+
prev_output_channel=prev_output_channel,
|
144 |
+
temb_channels=temb_channels,
|
145 |
+
add_upsample=add_upsample,
|
146 |
+
resnet_eps=resnet_eps,
|
147 |
+
resnet_act_fn=resnet_act_fn,
|
148 |
+
cross_attention_dim=cross_attention_dim,
|
149 |
+
attn_num_head_channels=attn_num_head_channels,
|
150 |
+
)
|
151 |
+
elif up_block_type == "AttnUpBlock2D":
|
152 |
+
return AttnUpBlock2D(
|
153 |
+
num_layers=num_layers,
|
154 |
+
in_channels=in_channels,
|
155 |
+
out_channels=out_channels,
|
156 |
+
prev_output_channel=prev_output_channel,
|
157 |
+
temb_channels=temb_channels,
|
158 |
+
add_upsample=add_upsample,
|
159 |
+
resnet_eps=resnet_eps,
|
160 |
+
resnet_act_fn=resnet_act_fn,
|
161 |
+
attn_num_head_channels=attn_num_head_channels,
|
162 |
+
)
|
163 |
+
elif up_block_type == "SkipUpBlock2D":
|
164 |
+
return SkipUpBlock2D(
|
165 |
+
num_layers=num_layers,
|
166 |
+
in_channels=in_channels,
|
167 |
+
out_channels=out_channels,
|
168 |
+
prev_output_channel=prev_output_channel,
|
169 |
+
temb_channels=temb_channels,
|
170 |
+
add_upsample=add_upsample,
|
171 |
+
resnet_eps=resnet_eps,
|
172 |
+
resnet_act_fn=resnet_act_fn,
|
173 |
+
)
|
174 |
+
elif up_block_type == "AttnSkipUpBlock2D":
|
175 |
+
return AttnSkipUpBlock2D(
|
176 |
+
num_layers=num_layers,
|
177 |
+
in_channels=in_channels,
|
178 |
+
out_channels=out_channels,
|
179 |
+
prev_output_channel=prev_output_channel,
|
180 |
+
temb_channels=temb_channels,
|
181 |
+
add_upsample=add_upsample,
|
182 |
+
resnet_eps=resnet_eps,
|
183 |
+
resnet_act_fn=resnet_act_fn,
|
184 |
+
attn_num_head_channels=attn_num_head_channels,
|
185 |
+
)
|
186 |
+
elif up_block_type == "UpDecoderBlock2D":
|
187 |
+
return UpDecoderBlock2D(
|
188 |
+
num_layers=num_layers,
|
189 |
+
in_channels=in_channels,
|
190 |
+
out_channels=out_channels,
|
191 |
+
add_upsample=add_upsample,
|
192 |
+
resnet_eps=resnet_eps,
|
193 |
+
resnet_act_fn=resnet_act_fn,
|
194 |
+
)
|
195 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
196 |
+
|
197 |
+
|
198 |
+
class UNetMidBlock2D(nn.Module):
|
199 |
+
def __init__(
|
200 |
+
self,
|
201 |
+
in_channels: int,
|
202 |
+
temb_channels: int,
|
203 |
+
dropout: float = 0.0,
|
204 |
+
num_layers: int = 1,
|
205 |
+
resnet_eps: float = 1e-6,
|
206 |
+
resnet_time_scale_shift: str = "default",
|
207 |
+
resnet_act_fn: str = "swish",
|
208 |
+
resnet_groups: int = 32,
|
209 |
+
resnet_pre_norm: bool = True,
|
210 |
+
attn_num_head_channels=1,
|
211 |
+
attention_type="default",
|
212 |
+
output_scale_factor=1.0,
|
213 |
+
**kwargs,
|
214 |
+
):
|
215 |
+
super().__init__()
|
216 |
+
|
217 |
+
self.attention_type = attention_type
|
218 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
219 |
+
|
220 |
+
# there is always at least one resnet
|
221 |
+
resnets = [
|
222 |
+
ResnetBlock2D(
|
223 |
+
in_channels=in_channels,
|
224 |
+
out_channels=in_channels,
|
225 |
+
temb_channels=temb_channels,
|
226 |
+
eps=resnet_eps,
|
227 |
+
groups=resnet_groups,
|
228 |
+
dropout=dropout,
|
229 |
+
time_embedding_norm=resnet_time_scale_shift,
|
230 |
+
non_linearity=resnet_act_fn,
|
231 |
+
output_scale_factor=output_scale_factor,
|
232 |
+
pre_norm=resnet_pre_norm,
|
233 |
+
)
|
234 |
+
]
|
235 |
+
attentions = []
|
236 |
+
|
237 |
+
for _ in range(num_layers):
|
238 |
+
attentions.append(
|
239 |
+
AttentionBlock(
|
240 |
+
in_channels,
|
241 |
+
num_head_channels=attn_num_head_channels,
|
242 |
+
rescale_output_factor=output_scale_factor,
|
243 |
+
eps=resnet_eps,
|
244 |
+
num_groups=resnet_groups,
|
245 |
+
)
|
246 |
+
)
|
247 |
+
resnets.append(
|
248 |
+
ResnetBlock2D(
|
249 |
+
in_channels=in_channels,
|
250 |
+
out_channels=in_channels,
|
251 |
+
temb_channels=temb_channels,
|
252 |
+
eps=resnet_eps,
|
253 |
+
groups=resnet_groups,
|
254 |
+
dropout=dropout,
|
255 |
+
time_embedding_norm=resnet_time_scale_shift,
|
256 |
+
non_linearity=resnet_act_fn,
|
257 |
+
output_scale_factor=output_scale_factor,
|
258 |
+
pre_norm=resnet_pre_norm,
|
259 |
+
)
|
260 |
+
)
|
261 |
+
|
262 |
+
self.attentions = nn.ModuleList(attentions)
|
263 |
+
self.resnets = nn.ModuleList(resnets)
|
264 |
+
|
265 |
+
def forward(self, hidden_states, temb=None, encoder_states=None):
|
266 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
267 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
268 |
+
if self.attention_type == "default":
|
269 |
+
hidden_states = attn(hidden_states)
|
270 |
+
else:
|
271 |
+
hidden_states = attn(hidden_states, encoder_states)
|
272 |
+
hidden_states = resnet(hidden_states, temb)
|
273 |
+
|
274 |
+
return hidden_states
|
275 |
+
|
276 |
+
|
277 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
278 |
+
def __init__(
|
279 |
+
self,
|
280 |
+
in_channels: int,
|
281 |
+
temb_channels: int,
|
282 |
+
dropout: float = 0.0,
|
283 |
+
num_layers: int = 1,
|
284 |
+
resnet_eps: float = 1e-6,
|
285 |
+
resnet_time_scale_shift: str = "default",
|
286 |
+
resnet_act_fn: str = "swish",
|
287 |
+
resnet_groups: int = 32,
|
288 |
+
resnet_pre_norm: bool = True,
|
289 |
+
attn_num_head_channels=1,
|
290 |
+
attention_type="default",
|
291 |
+
output_scale_factor=1.0,
|
292 |
+
cross_attention_dim=1280,
|
293 |
+
**kwargs,
|
294 |
+
):
|
295 |
+
super().__init__()
|
296 |
+
|
297 |
+
self.attention_type = attention_type
|
298 |
+
self.attn_num_head_channels = attn_num_head_channels
|
299 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
300 |
+
|
301 |
+
# there is always at least one resnet
|
302 |
+
resnets = [
|
303 |
+
ResnetBlock2D(
|
304 |
+
in_channels=in_channels,
|
305 |
+
out_channels=in_channels,
|
306 |
+
temb_channels=temb_channels,
|
307 |
+
eps=resnet_eps,
|
308 |
+
groups=resnet_groups,
|
309 |
+
dropout=dropout,
|
310 |
+
time_embedding_norm=resnet_time_scale_shift,
|
311 |
+
non_linearity=resnet_act_fn,
|
312 |
+
output_scale_factor=output_scale_factor,
|
313 |
+
pre_norm=resnet_pre_norm,
|
314 |
+
)
|
315 |
+
]
|
316 |
+
attentions = []
|
317 |
+
|
318 |
+
for _ in range(num_layers):
|
319 |
+
attentions.append(
|
320 |
+
SpatialTransformer(
|
321 |
+
in_channels,
|
322 |
+
attn_num_head_channels,
|
323 |
+
in_channels // attn_num_head_channels,
|
324 |
+
depth=1,
|
325 |
+
context_dim=cross_attention_dim,
|
326 |
+
)
|
327 |
+
)
|
328 |
+
resnets.append(
|
329 |
+
ResnetBlock2D(
|
330 |
+
in_channels=in_channels,
|
331 |
+
out_channels=in_channels,
|
332 |
+
temb_channels=temb_channels,
|
333 |
+
eps=resnet_eps,
|
334 |
+
groups=resnet_groups,
|
335 |
+
dropout=dropout,
|
336 |
+
time_embedding_norm=resnet_time_scale_shift,
|
337 |
+
non_linearity=resnet_act_fn,
|
338 |
+
output_scale_factor=output_scale_factor,
|
339 |
+
pre_norm=resnet_pre_norm,
|
340 |
+
)
|
341 |
+
)
|
342 |
+
|
343 |
+
self.attentions = nn.ModuleList(attentions)
|
344 |
+
self.resnets = nn.ModuleList(resnets)
|
345 |
+
|
346 |
+
def set_attention_slice(self, slice_size):
|
347 |
+
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
348 |
+
raise ValueError(
|
349 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
350 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
351 |
+
)
|
352 |
+
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
353 |
+
raise ValueError(
|
354 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
355 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
356 |
+
)
|
357 |
+
|
358 |
+
for attn in self.attentions:
|
359 |
+
attn._set_attention_slice(slice_size)
|
360 |
+
|
361 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
362 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
363 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
364 |
+
hidden_states = attn(hidden_states, encoder_hidden_states)
|
365 |
+
hidden_states = resnet(hidden_states, temb)
|
366 |
+
|
367 |
+
return hidden_states
|
368 |
+
|
369 |
+
|
370 |
+
class AttnDownBlock2D(nn.Module):
|
371 |
+
def __init__(
|
372 |
+
self,
|
373 |
+
in_channels: int,
|
374 |
+
out_channels: int,
|
375 |
+
temb_channels: int,
|
376 |
+
dropout: float = 0.0,
|
377 |
+
num_layers: int = 1,
|
378 |
+
resnet_eps: float = 1e-6,
|
379 |
+
resnet_time_scale_shift: str = "default",
|
380 |
+
resnet_act_fn: str = "swish",
|
381 |
+
resnet_groups: int = 32,
|
382 |
+
resnet_pre_norm: bool = True,
|
383 |
+
attn_num_head_channels=1,
|
384 |
+
attention_type="default",
|
385 |
+
output_scale_factor=1.0,
|
386 |
+
downsample_padding=1,
|
387 |
+
add_downsample=True,
|
388 |
+
):
|
389 |
+
super().__init__()
|
390 |
+
resnets = []
|
391 |
+
attentions = []
|
392 |
+
|
393 |
+
self.attention_type = attention_type
|
394 |
+
|
395 |
+
for i in range(num_layers):
|
396 |
+
in_channels = in_channels if i == 0 else out_channels
|
397 |
+
resnets.append(
|
398 |
+
ResnetBlock2D(
|
399 |
+
in_channels=in_channels,
|
400 |
+
out_channels=out_channels,
|
401 |
+
temb_channels=temb_channels,
|
402 |
+
eps=resnet_eps,
|
403 |
+
groups=resnet_groups,
|
404 |
+
dropout=dropout,
|
405 |
+
time_embedding_norm=resnet_time_scale_shift,
|
406 |
+
non_linearity=resnet_act_fn,
|
407 |
+
output_scale_factor=output_scale_factor,
|
408 |
+
pre_norm=resnet_pre_norm,
|
409 |
+
)
|
410 |
+
)
|
411 |
+
attentions.append(
|
412 |
+
AttentionBlock(
|
413 |
+
out_channels,
|
414 |
+
num_head_channels=attn_num_head_channels,
|
415 |
+
rescale_output_factor=output_scale_factor,
|
416 |
+
eps=resnet_eps,
|
417 |
+
)
|
418 |
+
)
|
419 |
+
|
420 |
+
self.attentions = nn.ModuleList(attentions)
|
421 |
+
self.resnets = nn.ModuleList(resnets)
|
422 |
+
|
423 |
+
if add_downsample:
|
424 |
+
self.downsamplers = nn.ModuleList(
|
425 |
+
[
|
426 |
+
Downsample2D(
|
427 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
428 |
+
)
|
429 |
+
]
|
430 |
+
)
|
431 |
+
else:
|
432 |
+
self.downsamplers = None
|
433 |
+
|
434 |
+
def forward(self, hidden_states, temb=None):
|
435 |
+
output_states = ()
|
436 |
+
|
437 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
438 |
+
hidden_states = resnet(hidden_states, temb)
|
439 |
+
hidden_states = attn(hidden_states)
|
440 |
+
output_states += (hidden_states,)
|
441 |
+
|
442 |
+
if self.downsamplers is not None:
|
443 |
+
for downsampler in self.downsamplers:
|
444 |
+
hidden_states = downsampler(hidden_states)
|
445 |
+
|
446 |
+
output_states += (hidden_states,)
|
447 |
+
|
448 |
+
return hidden_states, output_states
|
449 |
+
|
450 |
+
|
451 |
+
class CrossAttnDownBlock2D(nn.Module):
|
452 |
+
def __init__(
|
453 |
+
self,
|
454 |
+
in_channels: int,
|
455 |
+
out_channels: int,
|
456 |
+
temb_channels: int,
|
457 |
+
dropout: float = 0.0,
|
458 |
+
num_layers: int = 1,
|
459 |
+
resnet_eps: float = 1e-6,
|
460 |
+
resnet_time_scale_shift: str = "default",
|
461 |
+
resnet_act_fn: str = "swish",
|
462 |
+
resnet_groups: int = 32,
|
463 |
+
resnet_pre_norm: bool = True,
|
464 |
+
attn_num_head_channels=1,
|
465 |
+
cross_attention_dim=1280,
|
466 |
+
attention_type="default",
|
467 |
+
output_scale_factor=1.0,
|
468 |
+
downsample_padding=1,
|
469 |
+
add_downsample=True,
|
470 |
+
):
|
471 |
+
super().__init__()
|
472 |
+
resnets = []
|
473 |
+
attentions = []
|
474 |
+
|
475 |
+
self.attention_type = attention_type
|
476 |
+
self.attn_num_head_channels = attn_num_head_channels
|
477 |
+
|
478 |
+
for i in range(num_layers):
|
479 |
+
in_channels = in_channels if i == 0 else out_channels
|
480 |
+
resnets.append(
|
481 |
+
ResnetBlock2D(
|
482 |
+
in_channels=in_channels,
|
483 |
+
out_channels=out_channels,
|
484 |
+
temb_channels=temb_channels,
|
485 |
+
eps=resnet_eps,
|
486 |
+
groups=resnet_groups,
|
487 |
+
dropout=dropout,
|
488 |
+
time_embedding_norm=resnet_time_scale_shift,
|
489 |
+
non_linearity=resnet_act_fn,
|
490 |
+
output_scale_factor=output_scale_factor,
|
491 |
+
pre_norm=resnet_pre_norm,
|
492 |
+
)
|
493 |
+
)
|
494 |
+
attentions.append(
|
495 |
+
SpatialTransformer(
|
496 |
+
out_channels,
|
497 |
+
attn_num_head_channels,
|
498 |
+
out_channels // attn_num_head_channels,
|
499 |
+
depth=1,
|
500 |
+
context_dim=cross_attention_dim,
|
501 |
+
)
|
502 |
+
)
|
503 |
+
self.attentions = nn.ModuleList(attentions)
|
504 |
+
self.resnets = nn.ModuleList(resnets)
|
505 |
+
|
506 |
+
if add_downsample:
|
507 |
+
self.downsamplers = nn.ModuleList(
|
508 |
+
[
|
509 |
+
Downsample2D(
|
510 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
511 |
+
)
|
512 |
+
]
|
513 |
+
)
|
514 |
+
else:
|
515 |
+
self.downsamplers = None
|
516 |
+
|
517 |
+
def set_attention_slice(self, slice_size):
|
518 |
+
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
519 |
+
raise ValueError(
|
520 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
521 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
522 |
+
)
|
523 |
+
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
524 |
+
raise ValueError(
|
525 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
526 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
527 |
+
)
|
528 |
+
|
529 |
+
for attn in self.attentions:
|
530 |
+
attn._set_attention_slice(slice_size)
|
531 |
+
|
532 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
533 |
+
output_states = ()
|
534 |
+
|
535 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
536 |
+
hidden_states = resnet(hidden_states, temb)
|
537 |
+
hidden_states = attn(hidden_states, context=encoder_hidden_states)
|
538 |
+
output_states += (hidden_states,)
|
539 |
+
|
540 |
+
if self.downsamplers is not None:
|
541 |
+
for downsampler in self.downsamplers:
|
542 |
+
hidden_states = downsampler(hidden_states)
|
543 |
+
|
544 |
+
output_states += (hidden_states,)
|
545 |
+
|
546 |
+
return hidden_states, output_states
|
547 |
+
|
548 |
+
|
549 |
+
class DownBlock2D(nn.Module):
|
550 |
+
def __init__(
|
551 |
+
self,
|
552 |
+
in_channels: int,
|
553 |
+
out_channels: int,
|
554 |
+
temb_channels: int,
|
555 |
+
dropout: float = 0.0,
|
556 |
+
num_layers: int = 1,
|
557 |
+
resnet_eps: float = 1e-6,
|
558 |
+
resnet_time_scale_shift: str = "default",
|
559 |
+
resnet_act_fn: str = "swish",
|
560 |
+
resnet_groups: int = 32,
|
561 |
+
resnet_pre_norm: bool = True,
|
562 |
+
output_scale_factor=1.0,
|
563 |
+
add_downsample=True,
|
564 |
+
downsample_padding=1,
|
565 |
+
):
|
566 |
+
super().__init__()
|
567 |
+
resnets = []
|
568 |
+
|
569 |
+
for i in range(num_layers):
|
570 |
+
in_channels = in_channels if i == 0 else out_channels
|
571 |
+
resnets.append(
|
572 |
+
ResnetBlock2D(
|
573 |
+
in_channels=in_channels,
|
574 |
+
out_channels=out_channels,
|
575 |
+
temb_channels=temb_channels,
|
576 |
+
eps=resnet_eps,
|
577 |
+
groups=resnet_groups,
|
578 |
+
dropout=dropout,
|
579 |
+
time_embedding_norm=resnet_time_scale_shift,
|
580 |
+
non_linearity=resnet_act_fn,
|
581 |
+
output_scale_factor=output_scale_factor,
|
582 |
+
pre_norm=resnet_pre_norm,
|
583 |
+
)
|
584 |
+
)
|
585 |
+
|
586 |
+
self.resnets = nn.ModuleList(resnets)
|
587 |
+
|
588 |
+
if add_downsample:
|
589 |
+
self.downsamplers = nn.ModuleList(
|
590 |
+
[
|
591 |
+
Downsample2D(
|
592 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
593 |
+
)
|
594 |
+
]
|
595 |
+
)
|
596 |
+
else:
|
597 |
+
self.downsamplers = None
|
598 |
+
|
599 |
+
def forward(self, hidden_states, temb=None):
|
600 |
+
output_states = ()
|
601 |
+
|
602 |
+
for resnet in self.resnets:
|
603 |
+
hidden_states = resnet(hidden_states, temb)
|
604 |
+
output_states += (hidden_states,)
|
605 |
+
|
606 |
+
if self.downsamplers is not None:
|
607 |
+
for downsampler in self.downsamplers:
|
608 |
+
hidden_states = downsampler(hidden_states)
|
609 |
+
|
610 |
+
output_states += (hidden_states,)
|
611 |
+
|
612 |
+
return hidden_states, output_states
|
613 |
+
|
614 |
+
|
615 |
+
class DownEncoderBlock2D(nn.Module):
|
616 |
+
def __init__(
|
617 |
+
self,
|
618 |
+
in_channels: int,
|
619 |
+
out_channels: int,
|
620 |
+
dropout: float = 0.0,
|
621 |
+
num_layers: int = 1,
|
622 |
+
resnet_eps: float = 1e-6,
|
623 |
+
resnet_time_scale_shift: str = "default",
|
624 |
+
resnet_act_fn: str = "swish",
|
625 |
+
resnet_groups: int = 32,
|
626 |
+
resnet_pre_norm: bool = True,
|
627 |
+
output_scale_factor=1.0,
|
628 |
+
add_downsample=True,
|
629 |
+
downsample_padding=1,
|
630 |
+
):
|
631 |
+
super().__init__()
|
632 |
+
resnets = []
|
633 |
+
|
634 |
+
for i in range(num_layers):
|
635 |
+
in_channels = in_channels if i == 0 else out_channels
|
636 |
+
resnets.append(
|
637 |
+
ResnetBlock2D(
|
638 |
+
in_channels=in_channels,
|
639 |
+
out_channels=out_channels,
|
640 |
+
temb_channels=None,
|
641 |
+
eps=resnet_eps,
|
642 |
+
groups=resnet_groups,
|
643 |
+
dropout=dropout,
|
644 |
+
time_embedding_norm=resnet_time_scale_shift,
|
645 |
+
non_linearity=resnet_act_fn,
|
646 |
+
output_scale_factor=output_scale_factor,
|
647 |
+
pre_norm=resnet_pre_norm,
|
648 |
+
)
|
649 |
+
)
|
650 |
+
|
651 |
+
self.resnets = nn.ModuleList(resnets)
|
652 |
+
|
653 |
+
if add_downsample:
|
654 |
+
self.downsamplers = nn.ModuleList(
|
655 |
+
[
|
656 |
+
Downsample2D(
|
657 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
658 |
+
)
|
659 |
+
]
|
660 |
+
)
|
661 |
+
else:
|
662 |
+
self.downsamplers = None
|
663 |
+
|
664 |
+
def forward(self, hidden_states):
|
665 |
+
for resnet in self.resnets:
|
666 |
+
hidden_states = resnet(hidden_states, temb=None)
|
667 |
+
|
668 |
+
if self.downsamplers is not None:
|
669 |
+
for downsampler in self.downsamplers:
|
670 |
+
hidden_states = downsampler(hidden_states)
|
671 |
+
|
672 |
+
return hidden_states
|
673 |
+
|
674 |
+
|
675 |
+
class AttnDownEncoderBlock2D(nn.Module):
|
676 |
+
def __init__(
|
677 |
+
self,
|
678 |
+
in_channels: int,
|
679 |
+
out_channels: int,
|
680 |
+
dropout: float = 0.0,
|
681 |
+
num_layers: int = 1,
|
682 |
+
resnet_eps: float = 1e-6,
|
683 |
+
resnet_time_scale_shift: str = "default",
|
684 |
+
resnet_act_fn: str = "swish",
|
685 |
+
resnet_groups: int = 32,
|
686 |
+
resnet_pre_norm: bool = True,
|
687 |
+
attn_num_head_channels=1,
|
688 |
+
output_scale_factor=1.0,
|
689 |
+
add_downsample=True,
|
690 |
+
downsample_padding=1,
|
691 |
+
):
|
692 |
+
super().__init__()
|
693 |
+
resnets = []
|
694 |
+
attentions = []
|
695 |
+
|
696 |
+
for i in range(num_layers):
|
697 |
+
in_channels = in_channels if i == 0 else out_channels
|
698 |
+
resnets.append(
|
699 |
+
ResnetBlock2D(
|
700 |
+
in_channels=in_channels,
|
701 |
+
out_channels=out_channels,
|
702 |
+
temb_channels=None,
|
703 |
+
eps=resnet_eps,
|
704 |
+
groups=resnet_groups,
|
705 |
+
dropout=dropout,
|
706 |
+
time_embedding_norm=resnet_time_scale_shift,
|
707 |
+
non_linearity=resnet_act_fn,
|
708 |
+
output_scale_factor=output_scale_factor,
|
709 |
+
pre_norm=resnet_pre_norm,
|
710 |
+
)
|
711 |
+
)
|
712 |
+
attentions.append(
|
713 |
+
AttentionBlock(
|
714 |
+
out_channels,
|
715 |
+
num_head_channels=attn_num_head_channels,
|
716 |
+
rescale_output_factor=output_scale_factor,
|
717 |
+
eps=resnet_eps,
|
718 |
+
num_groups=resnet_groups,
|
719 |
+
)
|
720 |
+
)
|
721 |
+
|
722 |
+
self.attentions = nn.ModuleList(attentions)
|
723 |
+
self.resnets = nn.ModuleList(resnets)
|
724 |
+
|
725 |
+
if add_downsample:
|
726 |
+
self.downsamplers = nn.ModuleList(
|
727 |
+
[
|
728 |
+
Downsample2D(
|
729 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
730 |
+
)
|
731 |
+
]
|
732 |
+
)
|
733 |
+
else:
|
734 |
+
self.downsamplers = None
|
735 |
+
|
736 |
+
def forward(self, hidden_states):
|
737 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
738 |
+
hidden_states = resnet(hidden_states, temb=None)
|
739 |
+
hidden_states = attn(hidden_states)
|
740 |
+
|
741 |
+
if self.downsamplers is not None:
|
742 |
+
for downsampler in self.downsamplers:
|
743 |
+
hidden_states = downsampler(hidden_states)
|
744 |
+
|
745 |
+
return hidden_states
|
746 |
+
|
747 |
+
|
748 |
+
class AttnSkipDownBlock2D(nn.Module):
|
749 |
+
def __init__(
|
750 |
+
self,
|
751 |
+
in_channels: int,
|
752 |
+
out_channels: int,
|
753 |
+
temb_channels: int,
|
754 |
+
dropout: float = 0.0,
|
755 |
+
num_layers: int = 1,
|
756 |
+
resnet_eps: float = 1e-6,
|
757 |
+
resnet_time_scale_shift: str = "default",
|
758 |
+
resnet_act_fn: str = "swish",
|
759 |
+
resnet_pre_norm: bool = True,
|
760 |
+
attn_num_head_channels=1,
|
761 |
+
attention_type="default",
|
762 |
+
output_scale_factor=np.sqrt(2.0),
|
763 |
+
downsample_padding=1,
|
764 |
+
add_downsample=True,
|
765 |
+
):
|
766 |
+
super().__init__()
|
767 |
+
self.attentions = nn.ModuleList([])
|
768 |
+
self.resnets = nn.ModuleList([])
|
769 |
+
|
770 |
+
self.attention_type = attention_type
|
771 |
+
|
772 |
+
for i in range(num_layers):
|
773 |
+
in_channels = in_channels if i == 0 else out_channels
|
774 |
+
self.resnets.append(
|
775 |
+
ResnetBlock2D(
|
776 |
+
in_channels=in_channels,
|
777 |
+
out_channels=out_channels,
|
778 |
+
temb_channels=temb_channels,
|
779 |
+
eps=resnet_eps,
|
780 |
+
groups=min(in_channels // 4, 32),
|
781 |
+
groups_out=min(out_channels // 4, 32),
|
782 |
+
dropout=dropout,
|
783 |
+
time_embedding_norm=resnet_time_scale_shift,
|
784 |
+
non_linearity=resnet_act_fn,
|
785 |
+
output_scale_factor=output_scale_factor,
|
786 |
+
pre_norm=resnet_pre_norm,
|
787 |
+
)
|
788 |
+
)
|
789 |
+
self.attentions.append(
|
790 |
+
AttentionBlock(
|
791 |
+
out_channels,
|
792 |
+
num_head_channels=attn_num_head_channels,
|
793 |
+
rescale_output_factor=output_scale_factor,
|
794 |
+
eps=resnet_eps,
|
795 |
+
)
|
796 |
+
)
|
797 |
+
|
798 |
+
if add_downsample:
|
799 |
+
self.resnet_down = ResnetBlock2D(
|
800 |
+
in_channels=out_channels,
|
801 |
+
out_channels=out_channels,
|
802 |
+
temb_channels=temb_channels,
|
803 |
+
eps=resnet_eps,
|
804 |
+
groups=min(out_channels // 4, 32),
|
805 |
+
dropout=dropout,
|
806 |
+
time_embedding_norm=resnet_time_scale_shift,
|
807 |
+
non_linearity=resnet_act_fn,
|
808 |
+
output_scale_factor=output_scale_factor,
|
809 |
+
pre_norm=resnet_pre_norm,
|
810 |
+
use_nin_shortcut=True,
|
811 |
+
down=True,
|
812 |
+
kernel="fir",
|
813 |
+
)
|
814 |
+
self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)])
|
815 |
+
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
|
816 |
+
else:
|
817 |
+
self.resnet_down = None
|
818 |
+
self.downsamplers = None
|
819 |
+
self.skip_conv = None
|
820 |
+
|
821 |
+
def forward(self, hidden_states, temb=None, skip_sample=None):
|
822 |
+
output_states = ()
|
823 |
+
|
824 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
825 |
+
hidden_states = resnet(hidden_states, temb)
|
826 |
+
hidden_states = attn(hidden_states)
|
827 |
+
output_states += (hidden_states,)
|
828 |
+
|
829 |
+
if self.downsamplers is not None:
|
830 |
+
hidden_states = self.resnet_down(hidden_states, temb)
|
831 |
+
for downsampler in self.downsamplers:
|
832 |
+
skip_sample = downsampler(skip_sample)
|
833 |
+
|
834 |
+
hidden_states = self.skip_conv(skip_sample) + hidden_states
|
835 |
+
|
836 |
+
output_states += (hidden_states,)
|
837 |
+
|
838 |
+
return hidden_states, output_states, skip_sample
|
839 |
+
|
840 |
+
|
841 |
+
class SkipDownBlock2D(nn.Module):
|
842 |
+
def __init__(
|
843 |
+
self,
|
844 |
+
in_channels: int,
|
845 |
+
out_channels: int,
|
846 |
+
temb_channels: int,
|
847 |
+
dropout: float = 0.0,
|
848 |
+
num_layers: int = 1,
|
849 |
+
resnet_eps: float = 1e-6,
|
850 |
+
resnet_time_scale_shift: str = "default",
|
851 |
+
resnet_act_fn: str = "swish",
|
852 |
+
resnet_pre_norm: bool = True,
|
853 |
+
output_scale_factor=np.sqrt(2.0),
|
854 |
+
add_downsample=True,
|
855 |
+
downsample_padding=1,
|
856 |
+
):
|
857 |
+
super().__init__()
|
858 |
+
self.resnets = nn.ModuleList([])
|
859 |
+
|
860 |
+
for i in range(num_layers):
|
861 |
+
in_channels = in_channels if i == 0 else out_channels
|
862 |
+
self.resnets.append(
|
863 |
+
ResnetBlock2D(
|
864 |
+
in_channels=in_channels,
|
865 |
+
out_channels=out_channels,
|
866 |
+
temb_channels=temb_channels,
|
867 |
+
eps=resnet_eps,
|
868 |
+
groups=min(in_channels // 4, 32),
|
869 |
+
groups_out=min(out_channels // 4, 32),
|
870 |
+
dropout=dropout,
|
871 |
+
time_embedding_norm=resnet_time_scale_shift,
|
872 |
+
non_linearity=resnet_act_fn,
|
873 |
+
output_scale_factor=output_scale_factor,
|
874 |
+
pre_norm=resnet_pre_norm,
|
875 |
+
)
|
876 |
+
)
|
877 |
+
|
878 |
+
if add_downsample:
|
879 |
+
self.resnet_down = ResnetBlock2D(
|
880 |
+
in_channels=out_channels,
|
881 |
+
out_channels=out_channels,
|
882 |
+
temb_channels=temb_channels,
|
883 |
+
eps=resnet_eps,
|
884 |
+
groups=min(out_channels // 4, 32),
|
885 |
+
dropout=dropout,
|
886 |
+
time_embedding_norm=resnet_time_scale_shift,
|
887 |
+
non_linearity=resnet_act_fn,
|
888 |
+
output_scale_factor=output_scale_factor,
|
889 |
+
pre_norm=resnet_pre_norm,
|
890 |
+
use_nin_shortcut=True,
|
891 |
+
down=True,
|
892 |
+
kernel="fir",
|
893 |
+
)
|
894 |
+
self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)])
|
895 |
+
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
|
896 |
+
else:
|
897 |
+
self.resnet_down = None
|
898 |
+
self.downsamplers = None
|
899 |
+
self.skip_conv = None
|
900 |
+
|
901 |
+
def forward(self, hidden_states, temb=None, skip_sample=None):
|
902 |
+
output_states = ()
|
903 |
+
|
904 |
+
for resnet in self.resnets:
|
905 |
+
hidden_states = resnet(hidden_states, temb)
|
906 |
+
output_states += (hidden_states,)
|
907 |
+
|
908 |
+
if self.downsamplers is not None:
|
909 |
+
hidden_states = self.resnet_down(hidden_states, temb)
|
910 |
+
for downsampler in self.downsamplers:
|
911 |
+
skip_sample = downsampler(skip_sample)
|
912 |
+
|
913 |
+
hidden_states = self.skip_conv(skip_sample) + hidden_states
|
914 |
+
|
915 |
+
output_states += (hidden_states,)
|
916 |
+
|
917 |
+
return hidden_states, output_states, skip_sample
|
918 |
+
|
919 |
+
|
920 |
+
class AttnUpBlock2D(nn.Module):
|
921 |
+
def __init__(
|
922 |
+
self,
|
923 |
+
in_channels: int,
|
924 |
+
prev_output_channel: int,
|
925 |
+
out_channels: int,
|
926 |
+
temb_channels: int,
|
927 |
+
dropout: float = 0.0,
|
928 |
+
num_layers: int = 1,
|
929 |
+
resnet_eps: float = 1e-6,
|
930 |
+
resnet_time_scale_shift: str = "default",
|
931 |
+
resnet_act_fn: str = "swish",
|
932 |
+
resnet_groups: int = 32,
|
933 |
+
resnet_pre_norm: bool = True,
|
934 |
+
attention_type="default",
|
935 |
+
attn_num_head_channels=1,
|
936 |
+
output_scale_factor=1.0,
|
937 |
+
add_upsample=True,
|
938 |
+
):
|
939 |
+
super().__init__()
|
940 |
+
resnets = []
|
941 |
+
attentions = []
|
942 |
+
|
943 |
+
self.attention_type = attention_type
|
944 |
+
|
945 |
+
for i in range(num_layers):
|
946 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
947 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
948 |
+
|
949 |
+
resnets.append(
|
950 |
+
ResnetBlock2D(
|
951 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
952 |
+
out_channels=out_channels,
|
953 |
+
temb_channels=temb_channels,
|
954 |
+
eps=resnet_eps,
|
955 |
+
groups=resnet_groups,
|
956 |
+
dropout=dropout,
|
957 |
+
time_embedding_norm=resnet_time_scale_shift,
|
958 |
+
non_linearity=resnet_act_fn,
|
959 |
+
output_scale_factor=output_scale_factor,
|
960 |
+
pre_norm=resnet_pre_norm,
|
961 |
+
)
|
962 |
+
)
|
963 |
+
attentions.append(
|
964 |
+
AttentionBlock(
|
965 |
+
out_channels,
|
966 |
+
num_head_channels=attn_num_head_channels,
|
967 |
+
rescale_output_factor=output_scale_factor,
|
968 |
+
eps=resnet_eps,
|
969 |
+
)
|
970 |
+
)
|
971 |
+
|
972 |
+
self.attentions = nn.ModuleList(attentions)
|
973 |
+
self.resnets = nn.ModuleList(resnets)
|
974 |
+
|
975 |
+
if add_upsample:
|
976 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
977 |
+
else:
|
978 |
+
self.upsamplers = None
|
979 |
+
|
980 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
|
981 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
982 |
+
|
983 |
+
# pop res hidden states
|
984 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
985 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
986 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
987 |
+
|
988 |
+
hidden_states = resnet(hidden_states, temb)
|
989 |
+
hidden_states = attn(hidden_states)
|
990 |
+
|
991 |
+
if self.upsamplers is not None:
|
992 |
+
for upsampler in self.upsamplers:
|
993 |
+
hidden_states = upsampler(hidden_states)
|
994 |
+
|
995 |
+
return hidden_states
|
996 |
+
|
997 |
+
|
998 |
+
class CrossAttnUpBlock2D(nn.Module):
|
999 |
+
def __init__(
|
1000 |
+
self,
|
1001 |
+
in_channels: int,
|
1002 |
+
out_channels: int,
|
1003 |
+
prev_output_channel: int,
|
1004 |
+
temb_channels: int,
|
1005 |
+
dropout: float = 0.0,
|
1006 |
+
num_layers: int = 1,
|
1007 |
+
resnet_eps: float = 1e-6,
|
1008 |
+
resnet_time_scale_shift: str = "default",
|
1009 |
+
resnet_act_fn: str = "swish",
|
1010 |
+
resnet_groups: int = 32,
|
1011 |
+
resnet_pre_norm: bool = True,
|
1012 |
+
attn_num_head_channels=1,
|
1013 |
+
cross_attention_dim=1280,
|
1014 |
+
attention_type="default",
|
1015 |
+
output_scale_factor=1.0,
|
1016 |
+
downsample_padding=1,
|
1017 |
+
add_upsample=True,
|
1018 |
+
):
|
1019 |
+
super().__init__()
|
1020 |
+
resnets = []
|
1021 |
+
attentions = []
|
1022 |
+
|
1023 |
+
self.attention_type = attention_type
|
1024 |
+
self.attn_num_head_channels = attn_num_head_channels
|
1025 |
+
|
1026 |
+
for i in range(num_layers):
|
1027 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1028 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1029 |
+
|
1030 |
+
resnets.append(
|
1031 |
+
ResnetBlock2D(
|
1032 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1033 |
+
out_channels=out_channels,
|
1034 |
+
temb_channels=temb_channels,
|
1035 |
+
eps=resnet_eps,
|
1036 |
+
groups=resnet_groups,
|
1037 |
+
dropout=dropout,
|
1038 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1039 |
+
non_linearity=resnet_act_fn,
|
1040 |
+
output_scale_factor=output_scale_factor,
|
1041 |
+
pre_norm=resnet_pre_norm,
|
1042 |
+
)
|
1043 |
+
)
|
1044 |
+
attentions.append(
|
1045 |
+
SpatialTransformer(
|
1046 |
+
out_channels,
|
1047 |
+
attn_num_head_channels,
|
1048 |
+
out_channels // attn_num_head_channels,
|
1049 |
+
depth=1,
|
1050 |
+
context_dim=cross_attention_dim,
|
1051 |
+
)
|
1052 |
+
)
|
1053 |
+
self.attentions = nn.ModuleList(attentions)
|
1054 |
+
self.resnets = nn.ModuleList(resnets)
|
1055 |
+
|
1056 |
+
if add_upsample:
|
1057 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1058 |
+
else:
|
1059 |
+
self.upsamplers = None
|
1060 |
+
|
1061 |
+
def set_attention_slice(self, slice_size):
|
1062 |
+
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
1063 |
+
raise ValueError(
|
1064 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
1065 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
1066 |
+
)
|
1067 |
+
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
1068 |
+
raise ValueError(
|
1069 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
1070 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
1071 |
+
)
|
1072 |
+
|
1073 |
+
for attn in self.attentions:
|
1074 |
+
attn._set_attention_slice(slice_size)
|
1075 |
+
|
1076 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, encoder_hidden_states=None):
|
1077 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
1078 |
+
|
1079 |
+
# pop res hidden states
|
1080 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1081 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1082 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1083 |
+
|
1084 |
+
hidden_states = resnet(hidden_states, temb)
|
1085 |
+
hidden_states = attn(hidden_states, context=encoder_hidden_states)
|
1086 |
+
|
1087 |
+
if self.upsamplers is not None:
|
1088 |
+
for upsampler in self.upsamplers:
|
1089 |
+
hidden_states = upsampler(hidden_states)
|
1090 |
+
|
1091 |
+
return hidden_states
|
1092 |
+
|
1093 |
+
|
1094 |
+
class UpBlock2D(nn.Module):
|
1095 |
+
def __init__(
|
1096 |
+
self,
|
1097 |
+
in_channels: int,
|
1098 |
+
prev_output_channel: int,
|
1099 |
+
out_channels: int,
|
1100 |
+
temb_channels: int,
|
1101 |
+
dropout: float = 0.0,
|
1102 |
+
num_layers: int = 1,
|
1103 |
+
resnet_eps: float = 1e-6,
|
1104 |
+
resnet_time_scale_shift: str = "default",
|
1105 |
+
resnet_act_fn: str = "swish",
|
1106 |
+
resnet_groups: int = 32,
|
1107 |
+
resnet_pre_norm: bool = True,
|
1108 |
+
output_scale_factor=1.0,
|
1109 |
+
add_upsample=True,
|
1110 |
+
):
|
1111 |
+
super().__init__()
|
1112 |
+
resnets = []
|
1113 |
+
|
1114 |
+
for i in range(num_layers):
|
1115 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1116 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1117 |
+
|
1118 |
+
resnets.append(
|
1119 |
+
ResnetBlock2D(
|
1120 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1121 |
+
out_channels=out_channels,
|
1122 |
+
temb_channels=temb_channels,
|
1123 |
+
eps=resnet_eps,
|
1124 |
+
groups=resnet_groups,
|
1125 |
+
dropout=dropout,
|
1126 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1127 |
+
non_linearity=resnet_act_fn,
|
1128 |
+
output_scale_factor=output_scale_factor,
|
1129 |
+
pre_norm=resnet_pre_norm,
|
1130 |
+
)
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
self.resnets = nn.ModuleList(resnets)
|
1134 |
+
|
1135 |
+
if add_upsample:
|
1136 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1137 |
+
else:
|
1138 |
+
self.upsamplers = None
|
1139 |
+
|
1140 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
|
1141 |
+
for resnet in self.resnets:
|
1142 |
+
|
1143 |
+
# pop res hidden states
|
1144 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1145 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1146 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1147 |
+
|
1148 |
+
hidden_states = resnet(hidden_states, temb)
|
1149 |
+
|
1150 |
+
if self.upsamplers is not None:
|
1151 |
+
for upsampler in self.upsamplers:
|
1152 |
+
hidden_states = upsampler(hidden_states)
|
1153 |
+
|
1154 |
+
return hidden_states
|
1155 |
+
|
1156 |
+
|
1157 |
+
class UpDecoderBlock2D(nn.Module):
|
1158 |
+
def __init__(
|
1159 |
+
self,
|
1160 |
+
in_channels: int,
|
1161 |
+
out_channels: int,
|
1162 |
+
dropout: float = 0.0,
|
1163 |
+
num_layers: int = 1,
|
1164 |
+
resnet_eps: float = 1e-6,
|
1165 |
+
resnet_time_scale_shift: str = "default",
|
1166 |
+
resnet_act_fn: str = "swish",
|
1167 |
+
resnet_groups: int = 32,
|
1168 |
+
resnet_pre_norm: bool = True,
|
1169 |
+
output_scale_factor=1.0,
|
1170 |
+
add_upsample=True,
|
1171 |
+
):
|
1172 |
+
super().__init__()
|
1173 |
+
resnets = []
|
1174 |
+
|
1175 |
+
for i in range(num_layers):
|
1176 |
+
input_channels = in_channels if i == 0 else out_channels
|
1177 |
+
|
1178 |
+
resnets.append(
|
1179 |
+
ResnetBlock2D(
|
1180 |
+
in_channels=input_channels,
|
1181 |
+
out_channels=out_channels,
|
1182 |
+
temb_channels=None,
|
1183 |
+
eps=resnet_eps,
|
1184 |
+
groups=resnet_groups,
|
1185 |
+
dropout=dropout,
|
1186 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1187 |
+
non_linearity=resnet_act_fn,
|
1188 |
+
output_scale_factor=output_scale_factor,
|
1189 |
+
pre_norm=resnet_pre_norm,
|
1190 |
+
)
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
self.resnets = nn.ModuleList(resnets)
|
1194 |
+
|
1195 |
+
if add_upsample:
|
1196 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1197 |
+
else:
|
1198 |
+
self.upsamplers = None
|
1199 |
+
|
1200 |
+
def forward(self, hidden_states):
|
1201 |
+
for resnet in self.resnets:
|
1202 |
+
hidden_states = resnet(hidden_states, temb=None)
|
1203 |
+
|
1204 |
+
if self.upsamplers is not None:
|
1205 |
+
for upsampler in self.upsamplers:
|
1206 |
+
hidden_states = upsampler(hidden_states)
|
1207 |
+
|
1208 |
+
return hidden_states
|
1209 |
+
|
1210 |
+
|
1211 |
+
class AttnUpDecoderBlock2D(nn.Module):
|
1212 |
+
def __init__(
|
1213 |
+
self,
|
1214 |
+
in_channels: int,
|
1215 |
+
out_channels: int,
|
1216 |
+
dropout: float = 0.0,
|
1217 |
+
num_layers: int = 1,
|
1218 |
+
resnet_eps: float = 1e-6,
|
1219 |
+
resnet_time_scale_shift: str = "default",
|
1220 |
+
resnet_act_fn: str = "swish",
|
1221 |
+
resnet_groups: int = 32,
|
1222 |
+
resnet_pre_norm: bool = True,
|
1223 |
+
attn_num_head_channels=1,
|
1224 |
+
output_scale_factor=1.0,
|
1225 |
+
add_upsample=True,
|
1226 |
+
):
|
1227 |
+
super().__init__()
|
1228 |
+
resnets = []
|
1229 |
+
attentions = []
|
1230 |
+
|
1231 |
+
for i in range(num_layers):
|
1232 |
+
input_channels = in_channels if i == 0 else out_channels
|
1233 |
+
|
1234 |
+
resnets.append(
|
1235 |
+
ResnetBlock2D(
|
1236 |
+
in_channels=input_channels,
|
1237 |
+
out_channels=out_channels,
|
1238 |
+
temb_channels=None,
|
1239 |
+
eps=resnet_eps,
|
1240 |
+
groups=resnet_groups,
|
1241 |
+
dropout=dropout,
|
1242 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1243 |
+
non_linearity=resnet_act_fn,
|
1244 |
+
output_scale_factor=output_scale_factor,
|
1245 |
+
pre_norm=resnet_pre_norm,
|
1246 |
+
)
|
1247 |
+
)
|
1248 |
+
attentions.append(
|
1249 |
+
AttentionBlock(
|
1250 |
+
out_channels,
|
1251 |
+
num_head_channels=attn_num_head_channels,
|
1252 |
+
rescale_output_factor=output_scale_factor,
|
1253 |
+
eps=resnet_eps,
|
1254 |
+
num_groups=resnet_groups,
|
1255 |
+
)
|
1256 |
+
)
|
1257 |
+
|
1258 |
+
self.attentions = nn.ModuleList(attentions)
|
1259 |
+
self.resnets = nn.ModuleList(resnets)
|
1260 |
+
|
1261 |
+
if add_upsample:
|
1262 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1263 |
+
else:
|
1264 |
+
self.upsamplers = None
|
1265 |
+
|
1266 |
+
def forward(self, hidden_states):
|
1267 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
1268 |
+
hidden_states = resnet(hidden_states, temb=None)
|
1269 |
+
hidden_states = attn(hidden_states)
|
1270 |
+
|
1271 |
+
if self.upsamplers is not None:
|
1272 |
+
for upsampler in self.upsamplers:
|
1273 |
+
hidden_states = upsampler(hidden_states)
|
1274 |
+
|
1275 |
+
return hidden_states
|
1276 |
+
|
1277 |
+
|
1278 |
+
class AttnSkipUpBlock2D(nn.Module):
|
1279 |
+
def __init__(
|
1280 |
+
self,
|
1281 |
+
in_channels: int,
|
1282 |
+
prev_output_channel: int,
|
1283 |
+
out_channels: int,
|
1284 |
+
temb_channels: int,
|
1285 |
+
dropout: float = 0.0,
|
1286 |
+
num_layers: int = 1,
|
1287 |
+
resnet_eps: float = 1e-6,
|
1288 |
+
resnet_time_scale_shift: str = "default",
|
1289 |
+
resnet_act_fn: str = "swish",
|
1290 |
+
resnet_pre_norm: bool = True,
|
1291 |
+
attn_num_head_channels=1,
|
1292 |
+
attention_type="default",
|
1293 |
+
output_scale_factor=np.sqrt(2.0),
|
1294 |
+
upsample_padding=1,
|
1295 |
+
add_upsample=True,
|
1296 |
+
):
|
1297 |
+
super().__init__()
|
1298 |
+
self.attentions = nn.ModuleList([])
|
1299 |
+
self.resnets = nn.ModuleList([])
|
1300 |
+
|
1301 |
+
self.attention_type = attention_type
|
1302 |
+
|
1303 |
+
for i in range(num_layers):
|
1304 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1305 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1306 |
+
|
1307 |
+
self.resnets.append(
|
1308 |
+
ResnetBlock2D(
|
1309 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1310 |
+
out_channels=out_channels,
|
1311 |
+
temb_channels=temb_channels,
|
1312 |
+
eps=resnet_eps,
|
1313 |
+
groups=min(resnet_in_channels + res_skip_channels // 4, 32),
|
1314 |
+
groups_out=min(out_channels // 4, 32),
|
1315 |
+
dropout=dropout,
|
1316 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1317 |
+
non_linearity=resnet_act_fn,
|
1318 |
+
output_scale_factor=output_scale_factor,
|
1319 |
+
pre_norm=resnet_pre_norm,
|
1320 |
+
)
|
1321 |
+
)
|
1322 |
+
|
1323 |
+
self.attentions.append(
|
1324 |
+
AttentionBlock(
|
1325 |
+
out_channels,
|
1326 |
+
num_head_channels=attn_num_head_channels,
|
1327 |
+
rescale_output_factor=output_scale_factor,
|
1328 |
+
eps=resnet_eps,
|
1329 |
+
)
|
1330 |
+
)
|
1331 |
+
|
1332 |
+
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
|
1333 |
+
if add_upsample:
|
1334 |
+
self.resnet_up = ResnetBlock2D(
|
1335 |
+
in_channels=out_channels,
|
1336 |
+
out_channels=out_channels,
|
1337 |
+
temb_channels=temb_channels,
|
1338 |
+
eps=resnet_eps,
|
1339 |
+
groups=min(out_channels // 4, 32),
|
1340 |
+
groups_out=min(out_channels // 4, 32),
|
1341 |
+
dropout=dropout,
|
1342 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1343 |
+
non_linearity=resnet_act_fn,
|
1344 |
+
output_scale_factor=output_scale_factor,
|
1345 |
+
pre_norm=resnet_pre_norm,
|
1346 |
+
use_nin_shortcut=True,
|
1347 |
+
up=True,
|
1348 |
+
kernel="fir",
|
1349 |
+
)
|
1350 |
+
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1351 |
+
self.skip_norm = torch.nn.GroupNorm(
|
1352 |
+
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
|
1353 |
+
)
|
1354 |
+
self.act = nn.SiLU()
|
1355 |
+
else:
|
1356 |
+
self.resnet_up = None
|
1357 |
+
self.skip_conv = None
|
1358 |
+
self.skip_norm = None
|
1359 |
+
self.act = None
|
1360 |
+
|
1361 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
|
1362 |
+
for resnet in self.resnets:
|
1363 |
+
# pop res hidden states
|
1364 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1365 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1366 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1367 |
+
|
1368 |
+
hidden_states = resnet(hidden_states, temb)
|
1369 |
+
|
1370 |
+
hidden_states = self.attentions[0](hidden_states)
|
1371 |
+
|
1372 |
+
if skip_sample is not None:
|
1373 |
+
skip_sample = self.upsampler(skip_sample)
|
1374 |
+
else:
|
1375 |
+
skip_sample = 0
|
1376 |
+
|
1377 |
+
if self.resnet_up is not None:
|
1378 |
+
skip_sample_states = self.skip_norm(hidden_states)
|
1379 |
+
skip_sample_states = self.act(skip_sample_states)
|
1380 |
+
skip_sample_states = self.skip_conv(skip_sample_states)
|
1381 |
+
|
1382 |
+
skip_sample = skip_sample + skip_sample_states
|
1383 |
+
|
1384 |
+
hidden_states = self.resnet_up(hidden_states, temb)
|
1385 |
+
|
1386 |
+
return hidden_states, skip_sample
|
1387 |
+
|
1388 |
+
|
1389 |
+
class SkipUpBlock2D(nn.Module):
|
1390 |
+
def __init__(
|
1391 |
+
self,
|
1392 |
+
in_channels: int,
|
1393 |
+
prev_output_channel: int,
|
1394 |
+
out_channels: int,
|
1395 |
+
temb_channels: int,
|
1396 |
+
dropout: float = 0.0,
|
1397 |
+
num_layers: int = 1,
|
1398 |
+
resnet_eps: float = 1e-6,
|
1399 |
+
resnet_time_scale_shift: str = "default",
|
1400 |
+
resnet_act_fn: str = "swish",
|
1401 |
+
resnet_pre_norm: bool = True,
|
1402 |
+
output_scale_factor=np.sqrt(2.0),
|
1403 |
+
add_upsample=True,
|
1404 |
+
upsample_padding=1,
|
1405 |
+
):
|
1406 |
+
super().__init__()
|
1407 |
+
self.resnets = nn.ModuleList([])
|
1408 |
+
|
1409 |
+
for i in range(num_layers):
|
1410 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1411 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1412 |
+
|
1413 |
+
self.resnets.append(
|
1414 |
+
ResnetBlock2D(
|
1415 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1416 |
+
out_channels=out_channels,
|
1417 |
+
temb_channels=temb_channels,
|
1418 |
+
eps=resnet_eps,
|
1419 |
+
groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
|
1420 |
+
groups_out=min(out_channels // 4, 32),
|
1421 |
+
dropout=dropout,
|
1422 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1423 |
+
non_linearity=resnet_act_fn,
|
1424 |
+
output_scale_factor=output_scale_factor,
|
1425 |
+
pre_norm=resnet_pre_norm,
|
1426 |
+
)
|
1427 |
+
)
|
1428 |
+
|
1429 |
+
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
|
1430 |
+
if add_upsample:
|
1431 |
+
self.resnet_up = ResnetBlock2D(
|
1432 |
+
in_channels=out_channels,
|
1433 |
+
out_channels=out_channels,
|
1434 |
+
temb_channels=temb_channels,
|
1435 |
+
eps=resnet_eps,
|
1436 |
+
groups=min(out_channels // 4, 32),
|
1437 |
+
groups_out=min(out_channels // 4, 32),
|
1438 |
+
dropout=dropout,
|
1439 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1440 |
+
non_linearity=resnet_act_fn,
|
1441 |
+
output_scale_factor=output_scale_factor,
|
1442 |
+
pre_norm=resnet_pre_norm,
|
1443 |
+
use_nin_shortcut=True,
|
1444 |
+
up=True,
|
1445 |
+
kernel="fir",
|
1446 |
+
)
|
1447 |
+
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1448 |
+
self.skip_norm = torch.nn.GroupNorm(
|
1449 |
+
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
|
1450 |
+
)
|
1451 |
+
self.act = nn.SiLU()
|
1452 |
+
else:
|
1453 |
+
self.resnet_up = None
|
1454 |
+
self.skip_conv = None
|
1455 |
+
self.skip_norm = None
|
1456 |
+
self.act = None
|
1457 |
+
|
1458 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
|
1459 |
+
for resnet in self.resnets:
|
1460 |
+
# pop res hidden states
|
1461 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1462 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1463 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1464 |
+
|
1465 |
+
hidden_states = resnet(hidden_states, temb)
|
1466 |
+
|
1467 |
+
if skip_sample is not None:
|
1468 |
+
skip_sample = self.upsampler(skip_sample)
|
1469 |
+
else:
|
1470 |
+
skip_sample = 0
|
1471 |
+
|
1472 |
+
if self.resnet_up is not None:
|
1473 |
+
skip_sample_states = self.skip_norm(hidden_states)
|
1474 |
+
skip_sample_states = self.act(skip_sample_states)
|
1475 |
+
skip_sample_states = self.skip_conv(skip_sample_states)
|
1476 |
+
|
1477 |
+
skip_sample = skip_sample + skip_sample_states
|
1478 |
+
|
1479 |
+
hidden_states = self.resnet_up(hidden_states, temb)
|
1480 |
+
|
1481 |
+
return hidden_states, skip_sample
|
my_diffusers/models/vae.py
ADDED
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from ..configuration_utils import ConfigMixin, register_to_config
|
9 |
+
from ..modeling_utils import ModelMixin
|
10 |
+
from ..utils import BaseOutput
|
11 |
+
from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block
|
12 |
+
|
13 |
+
|
14 |
+
@dataclass
|
15 |
+
class DecoderOutput(BaseOutput):
|
16 |
+
"""
|
17 |
+
Output of decoding method.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
21 |
+
Decoded output sample of the model. Output of the last layer of the model.
|
22 |
+
"""
|
23 |
+
|
24 |
+
sample: torch.FloatTensor
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class VQEncoderOutput(BaseOutput):
|
29 |
+
"""
|
30 |
+
Output of VQModel encoding method.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
latents (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
34 |
+
Encoded output sample of the model. Output of the last layer of the model.
|
35 |
+
"""
|
36 |
+
|
37 |
+
latents: torch.FloatTensor
|
38 |
+
|
39 |
+
|
40 |
+
@dataclass
|
41 |
+
class AutoencoderKLOutput(BaseOutput):
|
42 |
+
"""
|
43 |
+
Output of AutoencoderKL encoding method.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
latent_dist (`DiagonalGaussianDistribution`):
|
47 |
+
Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
|
48 |
+
`DiagonalGaussianDistribution` allows for sampling latents from the distribution.
|
49 |
+
"""
|
50 |
+
|
51 |
+
latent_dist: "DiagonalGaussianDistribution"
|
52 |
+
|
53 |
+
|
54 |
+
class Encoder(nn.Module):
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
in_channels=3,
|
58 |
+
out_channels=3,
|
59 |
+
down_block_types=("DownEncoderBlock2D",),
|
60 |
+
block_out_channels=(64,),
|
61 |
+
layers_per_block=2,
|
62 |
+
act_fn="silu",
|
63 |
+
double_z=True,
|
64 |
+
):
|
65 |
+
super().__init__()
|
66 |
+
self.layers_per_block = layers_per_block
|
67 |
+
|
68 |
+
self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
|
69 |
+
|
70 |
+
self.mid_block = None
|
71 |
+
self.down_blocks = nn.ModuleList([])
|
72 |
+
|
73 |
+
# down
|
74 |
+
output_channel = block_out_channels[0]
|
75 |
+
for i, down_block_type in enumerate(down_block_types):
|
76 |
+
input_channel = output_channel
|
77 |
+
output_channel = block_out_channels[i]
|
78 |
+
is_final_block = i == len(block_out_channels) - 1
|
79 |
+
|
80 |
+
down_block = get_down_block(
|
81 |
+
down_block_type,
|
82 |
+
num_layers=self.layers_per_block,
|
83 |
+
in_channels=input_channel,
|
84 |
+
out_channels=output_channel,
|
85 |
+
add_downsample=not is_final_block,
|
86 |
+
resnet_eps=1e-6,
|
87 |
+
downsample_padding=0,
|
88 |
+
resnet_act_fn=act_fn,
|
89 |
+
attn_num_head_channels=None,
|
90 |
+
temb_channels=None,
|
91 |
+
)
|
92 |
+
self.down_blocks.append(down_block)
|
93 |
+
|
94 |
+
# mid
|
95 |
+
self.mid_block = UNetMidBlock2D(
|
96 |
+
in_channels=block_out_channels[-1],
|
97 |
+
resnet_eps=1e-6,
|
98 |
+
resnet_act_fn=act_fn,
|
99 |
+
output_scale_factor=1,
|
100 |
+
resnet_time_scale_shift="default",
|
101 |
+
attn_num_head_channels=None,
|
102 |
+
resnet_groups=32,
|
103 |
+
temb_channels=None,
|
104 |
+
)
|
105 |
+
|
106 |
+
# out
|
107 |
+
num_groups_out = 32
|
108 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=num_groups_out, eps=1e-6)
|
109 |
+
self.conv_act = nn.SiLU()
|
110 |
+
|
111 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
112 |
+
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
sample = x
|
116 |
+
sample = self.conv_in(sample)
|
117 |
+
|
118 |
+
# down
|
119 |
+
for down_block in self.down_blocks:
|
120 |
+
sample = down_block(sample)
|
121 |
+
|
122 |
+
# middle
|
123 |
+
sample = self.mid_block(sample)
|
124 |
+
|
125 |
+
# post-process
|
126 |
+
sample = self.conv_norm_out(sample)
|
127 |
+
sample = self.conv_act(sample)
|
128 |
+
sample = self.conv_out(sample)
|
129 |
+
|
130 |
+
return sample
|
131 |
+
|
132 |
+
|
133 |
+
class Decoder(nn.Module):
|
134 |
+
def __init__(
|
135 |
+
self,
|
136 |
+
in_channels=3,
|
137 |
+
out_channels=3,
|
138 |
+
up_block_types=("UpDecoderBlock2D",),
|
139 |
+
block_out_channels=(64,),
|
140 |
+
layers_per_block=2,
|
141 |
+
act_fn="silu",
|
142 |
+
):
|
143 |
+
super().__init__()
|
144 |
+
self.layers_per_block = layers_per_block
|
145 |
+
|
146 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)
|
147 |
+
|
148 |
+
self.mid_block = None
|
149 |
+
self.up_blocks = nn.ModuleList([])
|
150 |
+
|
151 |
+
# mid
|
152 |
+
self.mid_block = UNetMidBlock2D(
|
153 |
+
in_channels=block_out_channels[-1],
|
154 |
+
resnet_eps=1e-6,
|
155 |
+
resnet_act_fn=act_fn,
|
156 |
+
output_scale_factor=1,
|
157 |
+
resnet_time_scale_shift="default",
|
158 |
+
attn_num_head_channels=None,
|
159 |
+
resnet_groups=32,
|
160 |
+
temb_channels=None,
|
161 |
+
)
|
162 |
+
|
163 |
+
# up
|
164 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
165 |
+
output_channel = reversed_block_out_channels[0]
|
166 |
+
for i, up_block_type in enumerate(up_block_types):
|
167 |
+
prev_output_channel = output_channel
|
168 |
+
output_channel = reversed_block_out_channels[i]
|
169 |
+
|
170 |
+
is_final_block = i == len(block_out_channels) - 1
|
171 |
+
|
172 |
+
up_block = get_up_block(
|
173 |
+
up_block_type,
|
174 |
+
num_layers=self.layers_per_block + 1,
|
175 |
+
in_channels=prev_output_channel,
|
176 |
+
out_channels=output_channel,
|
177 |
+
prev_output_channel=None,
|
178 |
+
add_upsample=not is_final_block,
|
179 |
+
resnet_eps=1e-6,
|
180 |
+
resnet_act_fn=act_fn,
|
181 |
+
attn_num_head_channels=None,
|
182 |
+
temb_channels=None,
|
183 |
+
)
|
184 |
+
self.up_blocks.append(up_block)
|
185 |
+
prev_output_channel = output_channel
|
186 |
+
|
187 |
+
# out
|
188 |
+
num_groups_out = 32
|
189 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=1e-6)
|
190 |
+
self.conv_act = nn.SiLU()
|
191 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
192 |
+
|
193 |
+
def forward(self, z):
|
194 |
+
sample = z
|
195 |
+
sample = self.conv_in(sample)
|
196 |
+
|
197 |
+
# middle
|
198 |
+
sample = self.mid_block(sample)
|
199 |
+
|
200 |
+
# up
|
201 |
+
for up_block in self.up_blocks:
|
202 |
+
sample = up_block(sample)
|
203 |
+
|
204 |
+
# post-process
|
205 |
+
sample = self.conv_norm_out(sample)
|
206 |
+
sample = self.conv_act(sample)
|
207 |
+
sample = self.conv_out(sample)
|
208 |
+
|
209 |
+
return sample
|
210 |
+
|
211 |
+
|
212 |
+
class VectorQuantizer(nn.Module):
|
213 |
+
"""
|
214 |
+
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
|
215 |
+
multiplications and allows for post-hoc remapping of indices.
|
216 |
+
"""
|
217 |
+
|
218 |
+
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
219 |
+
# backwards compatibility we use the buggy version by default, but you can
|
220 |
+
# specify legacy=False to fix it.
|
221 |
+
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
|
222 |
+
super().__init__()
|
223 |
+
self.n_e = n_e
|
224 |
+
self.e_dim = e_dim
|
225 |
+
self.beta = beta
|
226 |
+
self.legacy = legacy
|
227 |
+
|
228 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
229 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
230 |
+
|
231 |
+
self.remap = remap
|
232 |
+
if self.remap is not None:
|
233 |
+
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
234 |
+
self.re_embed = self.used.shape[0]
|
235 |
+
self.unknown_index = unknown_index # "random" or "extra" or integer
|
236 |
+
if self.unknown_index == "extra":
|
237 |
+
self.unknown_index = self.re_embed
|
238 |
+
self.re_embed = self.re_embed + 1
|
239 |
+
print(
|
240 |
+
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
241 |
+
f"Using {self.unknown_index} for unknown indices."
|
242 |
+
)
|
243 |
+
else:
|
244 |
+
self.re_embed = n_e
|
245 |
+
|
246 |
+
self.sane_index_shape = sane_index_shape
|
247 |
+
|
248 |
+
def remap_to_used(self, inds):
|
249 |
+
ishape = inds.shape
|
250 |
+
assert len(ishape) > 1
|
251 |
+
inds = inds.reshape(ishape[0], -1)
|
252 |
+
used = self.used.to(inds)
|
253 |
+
match = (inds[:, :, None] == used[None, None, ...]).long()
|
254 |
+
new = match.argmax(-1)
|
255 |
+
unknown = match.sum(2) < 1
|
256 |
+
if self.unknown_index == "random":
|
257 |
+
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
|
258 |
+
else:
|
259 |
+
new[unknown] = self.unknown_index
|
260 |
+
return new.reshape(ishape)
|
261 |
+
|
262 |
+
def unmap_to_all(self, inds):
|
263 |
+
ishape = inds.shape
|
264 |
+
assert len(ishape) > 1
|
265 |
+
inds = inds.reshape(ishape[0], -1)
|
266 |
+
used = self.used.to(inds)
|
267 |
+
if self.re_embed > self.used.shape[0]: # extra token
|
268 |
+
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
269 |
+
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
270 |
+
return back.reshape(ishape)
|
271 |
+
|
272 |
+
def forward(self, z):
|
273 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
274 |
+
z = z.permute(0, 2, 3, 1).contiguous()
|
275 |
+
z_flattened = z.view(-1, self.e_dim)
|
276 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
277 |
+
|
278 |
+
d = (
|
279 |
+
torch.sum(z_flattened**2, dim=1, keepdim=True)
|
280 |
+
+ torch.sum(self.embedding.weight**2, dim=1)
|
281 |
+
- 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t())
|
282 |
+
)
|
283 |
+
|
284 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
285 |
+
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
286 |
+
perplexity = None
|
287 |
+
min_encodings = None
|
288 |
+
|
289 |
+
# compute loss for embedding
|
290 |
+
if not self.legacy:
|
291 |
+
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
|
292 |
+
else:
|
293 |
+
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
294 |
+
|
295 |
+
# preserve gradients
|
296 |
+
z_q = z + (z_q - z).detach()
|
297 |
+
|
298 |
+
# reshape back to match original input shape
|
299 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
300 |
+
|
301 |
+
if self.remap is not None:
|
302 |
+
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
303 |
+
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
304 |
+
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
305 |
+
|
306 |
+
if self.sane_index_shape:
|
307 |
+
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
308 |
+
|
309 |
+
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
310 |
+
|
311 |
+
def get_codebook_entry(self, indices, shape):
|
312 |
+
# shape specifying (batch, height, width, channel)
|
313 |
+
if self.remap is not None:
|
314 |
+
indices = indices.reshape(shape[0], -1) # add batch axis
|
315 |
+
indices = self.unmap_to_all(indices)
|
316 |
+
indices = indices.reshape(-1) # flatten again
|
317 |
+
|
318 |
+
# get quantized latent vectors
|
319 |
+
z_q = self.embedding(indices)
|
320 |
+
|
321 |
+
if shape is not None:
|
322 |
+
z_q = z_q.view(shape)
|
323 |
+
# reshape back to match original input shape
|
324 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
325 |
+
|
326 |
+
return z_q
|
327 |
+
|
328 |
+
|
329 |
+
class DiagonalGaussianDistribution(object):
|
330 |
+
def __init__(self, parameters, deterministic=False):
|
331 |
+
self.parameters = parameters
|
332 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
333 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
334 |
+
self.deterministic = deterministic
|
335 |
+
self.std = torch.exp(0.5 * self.logvar)
|
336 |
+
self.var = torch.exp(self.logvar)
|
337 |
+
if self.deterministic:
|
338 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
339 |
+
|
340 |
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
|
341 |
+
device = self.parameters.device
|
342 |
+
sample_device = "cpu" if device.type == "mps" else device
|
343 |
+
sample = torch.randn(self.mean.shape, generator=generator, device=sample_device).to(device)
|
344 |
+
x = self.mean + self.std * sample
|
345 |
+
return x
|
346 |
+
|
347 |
+
def kl(self, other=None):
|
348 |
+
if self.deterministic:
|
349 |
+
return torch.Tensor([0.0])
|
350 |
+
else:
|
351 |
+
if other is None:
|
352 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3])
|
353 |
+
else:
|
354 |
+
return 0.5 * torch.sum(
|
355 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
356 |
+
+ self.var / other.var
|
357 |
+
- 1.0
|
358 |
+
- self.logvar
|
359 |
+
+ other.logvar,
|
360 |
+
dim=[1, 2, 3],
|
361 |
+
)
|
362 |
+
|
363 |
+
def nll(self, sample, dims=[1, 2, 3]):
|
364 |
+
if self.deterministic:
|
365 |
+
return torch.Tensor([0.0])
|
366 |
+
logtwopi = np.log(2.0 * np.pi)
|
367 |
+
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims)
|
368 |
+
|
369 |
+
def mode(self):
|
370 |
+
return self.mean
|
371 |
+
|
372 |
+
|
373 |
+
class VQModel(ModelMixin, ConfigMixin):
|
374 |
+
r"""VQ-VAE model from the paper Neural Discrete Representation Learning by Aaron van den Oord, Oriol Vinyals and Koray
|
375 |
+
Kavukcuoglu.
|
376 |
+
|
377 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
|
378 |
+
implements for all the model (such as downloading or saving, etc.)
|
379 |
+
|
380 |
+
Parameters:
|
381 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
382 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
383 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to :
|
384 |
+
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
|
385 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to :
|
386 |
+
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
|
387 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to :
|
388 |
+
obj:`(64,)`): Tuple of block output channels.
|
389 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
390 |
+
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
|
391 |
+
sample_size (`int`, *optional*, defaults to `32`): TODO
|
392 |
+
num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE.
|
393 |
+
"""
|
394 |
+
|
395 |
+
@register_to_config
|
396 |
+
def __init__(
|
397 |
+
self,
|
398 |
+
in_channels: int = 3,
|
399 |
+
out_channels: int = 3,
|
400 |
+
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
|
401 |
+
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
|
402 |
+
block_out_channels: Tuple[int] = (64,),
|
403 |
+
layers_per_block: int = 1,
|
404 |
+
act_fn: str = "silu",
|
405 |
+
latent_channels: int = 3,
|
406 |
+
sample_size: int = 32,
|
407 |
+
num_vq_embeddings: int = 256,
|
408 |
+
):
|
409 |
+
super().__init__()
|
410 |
+
|
411 |
+
# pass init params to Encoder
|
412 |
+
self.encoder = Encoder(
|
413 |
+
in_channels=in_channels,
|
414 |
+
out_channels=latent_channels,
|
415 |
+
down_block_types=down_block_types,
|
416 |
+
block_out_channels=block_out_channels,
|
417 |
+
layers_per_block=layers_per_block,
|
418 |
+
act_fn=act_fn,
|
419 |
+
double_z=False,
|
420 |
+
)
|
421 |
+
|
422 |
+
self.quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
|
423 |
+
self.quantize = VectorQuantizer(
|
424 |
+
num_vq_embeddings, latent_channels, beta=0.25, remap=None, sane_index_shape=False
|
425 |
+
)
|
426 |
+
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
|
427 |
+
|
428 |
+
# pass init params to Decoder
|
429 |
+
self.decoder = Decoder(
|
430 |
+
in_channels=latent_channels,
|
431 |
+
out_channels=out_channels,
|
432 |
+
up_block_types=up_block_types,
|
433 |
+
block_out_channels=block_out_channels,
|
434 |
+
layers_per_block=layers_per_block,
|
435 |
+
act_fn=act_fn,
|
436 |
+
)
|
437 |
+
|
438 |
+
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> VQEncoderOutput:
|
439 |
+
h = self.encoder(x)
|
440 |
+
h = self.quant_conv(h)
|
441 |
+
|
442 |
+
if not return_dict:
|
443 |
+
return (h,)
|
444 |
+
|
445 |
+
return VQEncoderOutput(latents=h)
|
446 |
+
|
447 |
+
def decode(
|
448 |
+
self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True
|
449 |
+
) -> Union[DecoderOutput, torch.FloatTensor]:
|
450 |
+
# also go through quantization layer
|
451 |
+
if not force_not_quantize:
|
452 |
+
quant, emb_loss, info = self.quantize(h)
|
453 |
+
else:
|
454 |
+
quant = h
|
455 |
+
quant = self.post_quant_conv(quant)
|
456 |
+
dec = self.decoder(quant)
|
457 |
+
|
458 |
+
if not return_dict:
|
459 |
+
return (dec,)
|
460 |
+
|
461 |
+
return DecoderOutput(sample=dec)
|
462 |
+
|
463 |
+
def forward(self, sample: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
464 |
+
r"""
|
465 |
+
Args:
|
466 |
+
sample (`torch.FloatTensor`): Input sample.
|
467 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
468 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
469 |
+
"""
|
470 |
+
x = sample
|
471 |
+
h = self.encode(x).latents
|
472 |
+
dec = self.decode(h).sample
|
473 |
+
|
474 |
+
if not return_dict:
|
475 |
+
return (dec,)
|
476 |
+
|
477 |
+
return DecoderOutput(sample=dec)
|
478 |
+
|
479 |
+
|
480 |
+
class AutoencoderKL(ModelMixin, ConfigMixin):
|
481 |
+
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma
|
482 |
+
and Max Welling.
|
483 |
+
|
484 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
|
485 |
+
implements for all the model (such as downloading or saving, etc.)
|
486 |
+
|
487 |
+
Parameters:
|
488 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
489 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
490 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to :
|
491 |
+
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
|
492 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to :
|
493 |
+
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
|
494 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to :
|
495 |
+
obj:`(64,)`): Tuple of block output channels.
|
496 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
497 |
+
latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space.
|
498 |
+
sample_size (`int`, *optional*, defaults to `32`): TODO
|
499 |
+
"""
|
500 |
+
|
501 |
+
@register_to_config
|
502 |
+
def __init__(
|
503 |
+
self,
|
504 |
+
in_channels: int = 3,
|
505 |
+
out_channels: int = 3,
|
506 |
+
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
|
507 |
+
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
|
508 |
+
block_out_channels: Tuple[int] = (64,),
|
509 |
+
layers_per_block: int = 1,
|
510 |
+
act_fn: str = "silu",
|
511 |
+
latent_channels: int = 4,
|
512 |
+
sample_size: int = 32,
|
513 |
+
):
|
514 |
+
super().__init__()
|
515 |
+
|
516 |
+
# pass init params to Encoder
|
517 |
+
self.encoder = Encoder(
|
518 |
+
in_channels=in_channels,
|
519 |
+
out_channels=latent_channels,
|
520 |
+
down_block_types=down_block_types,
|
521 |
+
block_out_channels=block_out_channels,
|
522 |
+
layers_per_block=layers_per_block,
|
523 |
+
act_fn=act_fn,
|
524 |
+
double_z=True,
|
525 |
+
)
|
526 |
+
|
527 |
+
# pass init params to Decoder
|
528 |
+
self.decoder = Decoder(
|
529 |
+
in_channels=latent_channels,
|
530 |
+
out_channels=out_channels,
|
531 |
+
up_block_types=up_block_types,
|
532 |
+
block_out_channels=block_out_channels,
|
533 |
+
layers_per_block=layers_per_block,
|
534 |
+
act_fn=act_fn,
|
535 |
+
)
|
536 |
+
|
537 |
+
self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
538 |
+
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
|
539 |
+
|
540 |
+
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
|
541 |
+
h = self.encoder(x)
|
542 |
+
moments = self.quant_conv(h)
|
543 |
+
posterior = DiagonalGaussianDistribution(moments)
|
544 |
+
|
545 |
+
if not return_dict:
|
546 |
+
return (posterior,)
|
547 |
+
|
548 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
549 |
+
|
550 |
+
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
551 |
+
z = self.post_quant_conv(z)
|
552 |
+
dec = self.decoder(z)
|
553 |
+
|
554 |
+
if not return_dict:
|
555 |
+
return (dec,)
|
556 |
+
|
557 |
+
return DecoderOutput(sample=dec)
|
558 |
+
|
559 |
+
def forward(
|
560 |
+
self, sample: torch.FloatTensor, sample_posterior: bool = False, return_dict: bool = True
|
561 |
+
) -> Union[DecoderOutput, torch.FloatTensor]:
|
562 |
+
r"""
|
563 |
+
Args:
|
564 |
+
sample (`torch.FloatTensor`): Input sample.
|
565 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
566 |
+
Whether to sample from the posterior.
|
567 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
568 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
569 |
+
"""
|
570 |
+
x = sample
|
571 |
+
posterior = self.encode(x).latent_dist
|
572 |
+
if sample_posterior:
|
573 |
+
z = posterior.sample()
|
574 |
+
else:
|
575 |
+
z = posterior.mode()
|
576 |
+
dec = self.decode(z).sample
|
577 |
+
|
578 |
+
if not return_dict:
|
579 |
+
return (dec,)
|
580 |
+
|
581 |
+
return DecoderOutput(sample=dec)
|
my_diffusers/onnx_utils.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
import shutil
|
20 |
+
from pathlib import Path
|
21 |
+
from typing import Optional, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
|
27 |
+
from .utils import is_onnx_available, logging
|
28 |
+
|
29 |
+
|
30 |
+
if is_onnx_available():
|
31 |
+
import onnxruntime as ort
|
32 |
+
|
33 |
+
|
34 |
+
ONNX_WEIGHTS_NAME = "model.onnx"
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
class OnnxRuntimeModel:
|
41 |
+
base_model_prefix = "onnx_model"
|
42 |
+
|
43 |
+
def __init__(self, model=None, **kwargs):
|
44 |
+
logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future.")
|
45 |
+
self.model = model
|
46 |
+
self.model_save_dir = kwargs.get("model_save_dir", None)
|
47 |
+
self.latest_model_name = kwargs.get("latest_model_name", "model.onnx")
|
48 |
+
|
49 |
+
def __call__(self, **kwargs):
|
50 |
+
inputs = {k: np.array(v) for k, v in kwargs.items()}
|
51 |
+
return self.model.run(None, inputs)
|
52 |
+
|
53 |
+
@staticmethod
|
54 |
+
def load_model(path: Union[str, Path], provider=None):
|
55 |
+
"""
|
56 |
+
Loads an ONNX Inference session with an ExecutionProvider. Default provider is `CPUExecutionProvider`
|
57 |
+
|
58 |
+
Arguments:
|
59 |
+
path (`str` or `Path`):
|
60 |
+
Directory from which to load
|
61 |
+
provider(`str`, *optional*):
|
62 |
+
Onnxruntime execution provider to use for loading the model, defaults to `CPUExecutionProvider`
|
63 |
+
"""
|
64 |
+
if provider is None:
|
65 |
+
logger.info("No onnxruntime provider specified, using CPUExecutionProvider")
|
66 |
+
provider = "CPUExecutionProvider"
|
67 |
+
|
68 |
+
return ort.InferenceSession(path, providers=[provider])
|
69 |
+
|
70 |
+
def _save_pretrained(self, save_directory: Union[str, Path], file_name: Optional[str] = None, **kwargs):
|
71 |
+
"""
|
72 |
+
Save a model and its configuration file to a directory, so that it can be re-loaded using the
|
73 |
+
[`~optimum.onnxruntime.modeling_ort.ORTModel.from_pretrained`] class method. It will always save the
|
74 |
+
latest_model_name.
|
75 |
+
|
76 |
+
Arguments:
|
77 |
+
save_directory (`str` or `Path`):
|
78 |
+
Directory where to save the model file.
|
79 |
+
file_name(`str`, *optional*):
|
80 |
+
Overwrites the default model file name from `"model.onnx"` to `file_name`. This allows you to save the
|
81 |
+
model with a different name.
|
82 |
+
"""
|
83 |
+
model_file_name = file_name if file_name is not None else ONNX_WEIGHTS_NAME
|
84 |
+
|
85 |
+
src_path = self.model_save_dir.joinpath(self.latest_model_name)
|
86 |
+
dst_path = Path(save_directory).joinpath(model_file_name)
|
87 |
+
if not src_path.samefile(dst_path):
|
88 |
+
shutil.copyfile(src_path, dst_path)
|
89 |
+
|
90 |
+
def save_pretrained(
|
91 |
+
self,
|
92 |
+
save_directory: Union[str, os.PathLike],
|
93 |
+
**kwargs,
|
94 |
+
):
|
95 |
+
"""
|
96 |
+
Save a model to a directory, so that it can be re-loaded using the [`~OnnxModel.from_pretrained`] class
|
97 |
+
method.:
|
98 |
+
|
99 |
+
Arguments:
|
100 |
+
save_directory (`str` or `os.PathLike`):
|
101 |
+
Directory to which to save. Will be created if it doesn't exist.
|
102 |
+
"""
|
103 |
+
if os.path.isfile(save_directory):
|
104 |
+
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
105 |
+
return
|
106 |
+
|
107 |
+
os.makedirs(save_directory, exist_ok=True)
|
108 |
+
|
109 |
+
# saving model weights/files
|
110 |
+
self._save_pretrained(save_directory, **kwargs)
|
111 |
+
|
112 |
+
@classmethod
|
113 |
+
def _from_pretrained(
|
114 |
+
cls,
|
115 |
+
model_id: Union[str, Path],
|
116 |
+
use_auth_token: Optional[Union[bool, str, None]] = None,
|
117 |
+
revision: Optional[Union[str, None]] = None,
|
118 |
+
force_download: bool = False,
|
119 |
+
cache_dir: Optional[str] = None,
|
120 |
+
file_name: Optional[str] = None,
|
121 |
+
provider: Optional[str] = None,
|
122 |
+
**kwargs,
|
123 |
+
):
|
124 |
+
"""
|
125 |
+
Load a model from a directory or the HF Hub.
|
126 |
+
|
127 |
+
Arguments:
|
128 |
+
model_id (`str` or `Path`):
|
129 |
+
Directory from which to load
|
130 |
+
use_auth_token (`str` or `bool`):
|
131 |
+
Is needed to load models from a private or gated repository
|
132 |
+
revision (`str`):
|
133 |
+
Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id
|
134 |
+
cache_dir (`Union[str, Path]`, *optional*):
|
135 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
136 |
+
standard cache should not be used.
|
137 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
138 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
139 |
+
cached versions if they exist.
|
140 |
+
file_name(`str`):
|
141 |
+
Overwrites the default model file name from `"model.onnx"` to `file_name`. This allows you to load
|
142 |
+
different model files from the same repository or directory.
|
143 |
+
provider(`str`):
|
144 |
+
The ONNX runtime provider, e.g. `CPUExecutionProvider` or `CUDAExecutionProvider`.
|
145 |
+
kwargs (`Dict`, *optional*):
|
146 |
+
kwargs will be passed to the model during initialization
|
147 |
+
"""
|
148 |
+
model_file_name = file_name if file_name is not None else ONNX_WEIGHTS_NAME
|
149 |
+
# load model from local directory
|
150 |
+
if os.path.isdir(model_id):
|
151 |
+
model = OnnxRuntimeModel.load_model(os.path.join(model_id, model_file_name), provider=provider)
|
152 |
+
kwargs["model_save_dir"] = Path(model_id)
|
153 |
+
# load model from hub
|
154 |
+
else:
|
155 |
+
# download model
|
156 |
+
model_cache_path = hf_hub_download(
|
157 |
+
repo_id=model_id,
|
158 |
+
filename=model_file_name,
|
159 |
+
use_auth_token=use_auth_token,
|
160 |
+
revision=revision,
|
161 |
+
cache_dir=cache_dir,
|
162 |
+
force_download=force_download,
|
163 |
+
)
|
164 |
+
kwargs["model_save_dir"] = Path(model_cache_path).parent
|
165 |
+
kwargs["latest_model_name"] = Path(model_cache_path).name
|
166 |
+
model = OnnxRuntimeModel.load_model(model_cache_path, provider=provider)
|
167 |
+
return cls(model=model, **kwargs)
|
168 |
+
|
169 |
+
@classmethod
|
170 |
+
def from_pretrained(
|
171 |
+
cls,
|
172 |
+
model_id: Union[str, Path],
|
173 |
+
force_download: bool = True,
|
174 |
+
use_auth_token: Optional[str] = None,
|
175 |
+
cache_dir: Optional[str] = None,
|
176 |
+
**model_kwargs,
|
177 |
+
):
|
178 |
+
revision = None
|
179 |
+
if len(str(model_id).split("@")) == 2:
|
180 |
+
model_id, revision = model_id.split("@")
|
181 |
+
|
182 |
+
return cls._from_pretrained(
|
183 |
+
model_id=model_id,
|
184 |
+
revision=revision,
|
185 |
+
cache_dir=cache_dir,
|
186 |
+
force_download=force_download,
|
187 |
+
use_auth_token=use_auth_token,
|
188 |
+
**model_kwargs,
|
189 |
+
)
|
my_diffusers/optimization.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch optimization for diffusion models."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from enum import Enum
|
19 |
+
from typing import Optional, Union
|
20 |
+
|
21 |
+
from torch.optim import Optimizer
|
22 |
+
from torch.optim.lr_scheduler import LambdaLR
|
23 |
+
|
24 |
+
from .utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
class SchedulerType(Enum):
|
31 |
+
LINEAR = "linear"
|
32 |
+
COSINE = "cosine"
|
33 |
+
COSINE_WITH_RESTARTS = "cosine_with_restarts"
|
34 |
+
POLYNOMIAL = "polynomial"
|
35 |
+
CONSTANT = "constant"
|
36 |
+
CONSTANT_WITH_WARMUP = "constant_with_warmup"
|
37 |
+
|
38 |
+
|
39 |
+
def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1):
|
40 |
+
"""
|
41 |
+
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
optimizer ([`~torch.optim.Optimizer`]):
|
45 |
+
The optimizer for which to schedule the learning rate.
|
46 |
+
last_epoch (`int`, *optional*, defaults to -1):
|
47 |
+
The index of the last epoch when resuming training.
|
48 |
+
|
49 |
+
Return:
|
50 |
+
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
51 |
+
"""
|
52 |
+
return LambdaLR(optimizer, lambda _: 1, last_epoch=last_epoch)
|
53 |
+
|
54 |
+
|
55 |
+
def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1):
|
56 |
+
"""
|
57 |
+
Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
|
58 |
+
increases linearly between 0 and the initial lr set in the optimizer.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
optimizer ([`~torch.optim.Optimizer`]):
|
62 |
+
The optimizer for which to schedule the learning rate.
|
63 |
+
num_warmup_steps (`int`):
|
64 |
+
The number of steps for the warmup phase.
|
65 |
+
last_epoch (`int`, *optional*, defaults to -1):
|
66 |
+
The index of the last epoch when resuming training.
|
67 |
+
|
68 |
+
Return:
|
69 |
+
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
70 |
+
"""
|
71 |
+
|
72 |
+
def lr_lambda(current_step: int):
|
73 |
+
if current_step < num_warmup_steps:
|
74 |
+
return float(current_step) / float(max(1.0, num_warmup_steps))
|
75 |
+
return 1.0
|
76 |
+
|
77 |
+
return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
|
78 |
+
|
79 |
+
|
80 |
+
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
|
81 |
+
"""
|
82 |
+
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
|
83 |
+
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
optimizer ([`~torch.optim.Optimizer`]):
|
87 |
+
The optimizer for which to schedule the learning rate.
|
88 |
+
num_warmup_steps (`int`):
|
89 |
+
The number of steps for the warmup phase.
|
90 |
+
num_training_steps (`int`):
|
91 |
+
The total number of training steps.
|
92 |
+
last_epoch (`int`, *optional*, defaults to -1):
|
93 |
+
The index of the last epoch when resuming training.
|
94 |
+
|
95 |
+
Return:
|
96 |
+
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
97 |
+
"""
|
98 |
+
|
99 |
+
def lr_lambda(current_step: int):
|
100 |
+
if current_step < num_warmup_steps:
|
101 |
+
return float(current_step) / float(max(1, num_warmup_steps))
|
102 |
+
return max(
|
103 |
+
0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
|
104 |
+
)
|
105 |
+
|
106 |
+
return LambdaLR(optimizer, lr_lambda, last_epoch)
|
107 |
+
|
108 |
+
|
109 |
+
def get_cosine_schedule_with_warmup(
|
110 |
+
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
|
111 |
+
):
|
112 |
+
"""
|
113 |
+
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
114 |
+
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
|
115 |
+
initial lr set in the optimizer.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
optimizer ([`~torch.optim.Optimizer`]):
|
119 |
+
The optimizer for which to schedule the learning rate.
|
120 |
+
num_warmup_steps (`int`):
|
121 |
+
The number of steps for the warmup phase.
|
122 |
+
num_training_steps (`int`):
|
123 |
+
The total number of training steps.
|
124 |
+
num_cycles (`float`, *optional*, defaults to 0.5):
|
125 |
+
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
|
126 |
+
following a half-cosine).
|
127 |
+
last_epoch (`int`, *optional*, defaults to -1):
|
128 |
+
The index of the last epoch when resuming training.
|
129 |
+
|
130 |
+
Return:
|
131 |
+
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
132 |
+
"""
|
133 |
+
|
134 |
+
def lr_lambda(current_step):
|
135 |
+
if current_step < num_warmup_steps:
|
136 |
+
return float(current_step) / float(max(1, num_warmup_steps))
|
137 |
+
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
|
138 |
+
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
|
139 |
+
|
140 |
+
return LambdaLR(optimizer, lr_lambda, last_epoch)
|
141 |
+
|
142 |
+
|
143 |
+
def get_cosine_with_hard_restarts_schedule_with_warmup(
|
144 |
+
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1
|
145 |
+
):
|
146 |
+
"""
|
147 |
+
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
148 |
+
initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
|
149 |
+
linearly between 0 and the initial lr set in the optimizer.
|
150 |
+
|
151 |
+
Args:
|
152 |
+
optimizer ([`~torch.optim.Optimizer`]):
|
153 |
+
The optimizer for which to schedule the learning rate.
|
154 |
+
num_warmup_steps (`int`):
|
155 |
+
The number of steps for the warmup phase.
|
156 |
+
num_training_steps (`int`):
|
157 |
+
The total number of training steps.
|
158 |
+
num_cycles (`int`, *optional*, defaults to 1):
|
159 |
+
The number of hard restarts to use.
|
160 |
+
last_epoch (`int`, *optional*, defaults to -1):
|
161 |
+
The index of the last epoch when resuming training.
|
162 |
+
|
163 |
+
Return:
|
164 |
+
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
165 |
+
"""
|
166 |
+
|
167 |
+
def lr_lambda(current_step):
|
168 |
+
if current_step < num_warmup_steps:
|
169 |
+
return float(current_step) / float(max(1, num_warmup_steps))
|
170 |
+
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
|
171 |
+
if progress >= 1.0:
|
172 |
+
return 0.0
|
173 |
+
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))
|
174 |
+
|
175 |
+
return LambdaLR(optimizer, lr_lambda, last_epoch)
|
176 |
+
|
177 |
+
|
178 |
+
def get_polynomial_decay_schedule_with_warmup(
|
179 |
+
optimizer, num_warmup_steps, num_training_steps, lr_end=1e-7, power=1.0, last_epoch=-1
|
180 |
+
):
|
181 |
+
"""
|
182 |
+
Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
|
183 |
+
optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
|
184 |
+
initial lr set in the optimizer.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
optimizer ([`~torch.optim.Optimizer`]):
|
188 |
+
The optimizer for which to schedule the learning rate.
|
189 |
+
num_warmup_steps (`int`):
|
190 |
+
The number of steps for the warmup phase.
|
191 |
+
num_training_steps (`int`):
|
192 |
+
The total number of training steps.
|
193 |
+
lr_end (`float`, *optional*, defaults to 1e-7):
|
194 |
+
The end LR.
|
195 |
+
power (`float`, *optional*, defaults to 1.0):
|
196 |
+
Power factor.
|
197 |
+
last_epoch (`int`, *optional*, defaults to -1):
|
198 |
+
The index of the last epoch when resuming training.
|
199 |
+
|
200 |
+
Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT
|
201 |
+
implementation at
|
202 |
+
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37
|
203 |
+
|
204 |
+
Return:
|
205 |
+
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
206 |
+
|
207 |
+
"""
|
208 |
+
|
209 |
+
lr_init = optimizer.defaults["lr"]
|
210 |
+
if not (lr_init > lr_end):
|
211 |
+
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})")
|
212 |
+
|
213 |
+
def lr_lambda(current_step: int):
|
214 |
+
if current_step < num_warmup_steps:
|
215 |
+
return float(current_step) / float(max(1, num_warmup_steps))
|
216 |
+
elif current_step > num_training_steps:
|
217 |
+
return lr_end / lr_init # as LambdaLR multiplies by lr_init
|
218 |
+
else:
|
219 |
+
lr_range = lr_init - lr_end
|
220 |
+
decay_steps = num_training_steps - num_warmup_steps
|
221 |
+
pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
|
222 |
+
decay = lr_range * pct_remaining**power + lr_end
|
223 |
+
return decay / lr_init # as LambdaLR multiplies by lr_init
|
224 |
+
|
225 |
+
return LambdaLR(optimizer, lr_lambda, last_epoch)
|
226 |
+
|
227 |
+
|
228 |
+
TYPE_TO_SCHEDULER_FUNCTION = {
|
229 |
+
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
|
230 |
+
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
|
231 |
+
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
|
232 |
+
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
|
233 |
+
SchedulerType.CONSTANT: get_constant_schedule,
|
234 |
+
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
|
235 |
+
}
|
236 |
+
|
237 |
+
|
238 |
+
def get_scheduler(
|
239 |
+
name: Union[str, SchedulerType],
|
240 |
+
optimizer: Optimizer,
|
241 |
+
num_warmup_steps: Optional[int] = None,
|
242 |
+
num_training_steps: Optional[int] = None,
|
243 |
+
):
|
244 |
+
"""
|
245 |
+
Unified API to get any scheduler from its name.
|
246 |
+
|
247 |
+
Args:
|
248 |
+
name (`str` or `SchedulerType`):
|
249 |
+
The name of the scheduler to use.
|
250 |
+
optimizer (`torch.optim.Optimizer`):
|
251 |
+
The optimizer that will be used during training.
|
252 |
+
num_warmup_steps (`int`, *optional*):
|
253 |
+
The number of warmup steps to do. This is not required by all schedulers (hence the argument being
|
254 |
+
optional), the function will raise an error if it's unset and the scheduler type requires it.
|
255 |
+
num_training_steps (`int``, *optional*):
|
256 |
+
The number of training steps to do. This is not required by all schedulers (hence the argument being
|
257 |
+
optional), the function will raise an error if it's unset and the scheduler type requires it.
|
258 |
+
"""
|
259 |
+
name = SchedulerType(name)
|
260 |
+
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
|
261 |
+
if name == SchedulerType.CONSTANT:
|
262 |
+
return schedule_func(optimizer)
|
263 |
+
|
264 |
+
# All other schedulers require `num_warmup_steps`
|
265 |
+
if num_warmup_steps is None:
|
266 |
+
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
|
267 |
+
|
268 |
+
if name == SchedulerType.CONSTANT_WITH_WARMUP:
|
269 |
+
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)
|
270 |
+
|
271 |
+
# All other schedulers require `num_training_steps`
|
272 |
+
if num_training_steps is None:
|
273 |
+
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
|
274 |
+
|
275 |
+
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps)
|
my_diffusers/pipeline_utils.py
ADDED
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import importlib
|
18 |
+
import inspect
|
19 |
+
import os
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import List, Optional, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import torch
|
25 |
+
|
26 |
+
import diffusers
|
27 |
+
import PIL
|
28 |
+
from huggingface_hub import snapshot_download
|
29 |
+
from PIL import Image
|
30 |
+
from tqdm.auto import tqdm
|
31 |
+
|
32 |
+
from .configuration_utils import ConfigMixin
|
33 |
+
from .utils import DIFFUSERS_CACHE, BaseOutput, logging
|
34 |
+
|
35 |
+
|
36 |
+
INDEX_FILE = "diffusion_pytorch_model.bin"
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
LOADABLE_CLASSES = {
|
43 |
+
"diffusers": {
|
44 |
+
"ModelMixin": ["save_pretrained", "from_pretrained"],
|
45 |
+
"SchedulerMixin": ["save_config", "from_config"],
|
46 |
+
"DiffusionPipeline": ["save_pretrained", "from_pretrained"],
|
47 |
+
"OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
|
48 |
+
},
|
49 |
+
"transformers": {
|
50 |
+
"PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
|
51 |
+
"PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
|
52 |
+
"PreTrainedModel": ["save_pretrained", "from_pretrained"],
|
53 |
+
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
|
54 |
+
},
|
55 |
+
}
|
56 |
+
|
57 |
+
ALL_IMPORTABLE_CLASSES = {}
|
58 |
+
for library in LOADABLE_CLASSES:
|
59 |
+
ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])
|
60 |
+
|
61 |
+
|
62 |
+
@dataclass
|
63 |
+
class ImagePipelineOutput(BaseOutput):
|
64 |
+
"""
|
65 |
+
Output class for image pipelines.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
69 |
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
70 |
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
71 |
+
"""
|
72 |
+
|
73 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
74 |
+
|
75 |
+
|
76 |
+
class DiffusionPipeline(ConfigMixin):
|
77 |
+
r"""
|
78 |
+
Base class for all models.
|
79 |
+
|
80 |
+
[`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
|
81 |
+
and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:
|
82 |
+
|
83 |
+
- move all PyTorch modules to the device of your choice
|
84 |
+
- enabling/disabling the progress bar for the denoising iteration
|
85 |
+
|
86 |
+
Class attributes:
|
87 |
+
|
88 |
+
- **config_name** ([`str`]) -- name of the config file that will store the class and module names of all
|
89 |
+
compenents of the diffusion pipeline.
|
90 |
+
"""
|
91 |
+
config_name = "model_index.json"
|
92 |
+
|
93 |
+
def register_modules(self, **kwargs):
|
94 |
+
# import it here to avoid circular import
|
95 |
+
from diffusers import pipelines
|
96 |
+
|
97 |
+
for name, module in kwargs.items():
|
98 |
+
# retrive library
|
99 |
+
library = module.__module__.split(".")[0]
|
100 |
+
|
101 |
+
# check if the module is a pipeline module
|
102 |
+
pipeline_dir = module.__module__.split(".")[-2]
|
103 |
+
path = module.__module__.split(".")
|
104 |
+
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
|
105 |
+
|
106 |
+
# if library is not in LOADABLE_CLASSES, then it is a custom module.
|
107 |
+
# Or if it's a pipeline module, then the module is inside the pipeline
|
108 |
+
# folder so we set the library to module name.
|
109 |
+
if library not in LOADABLE_CLASSES or is_pipeline_module:
|
110 |
+
library = pipeline_dir
|
111 |
+
|
112 |
+
# retrive class_name
|
113 |
+
class_name = module.__class__.__name__
|
114 |
+
|
115 |
+
register_dict = {name: (library, class_name)}
|
116 |
+
|
117 |
+
# save model index config
|
118 |
+
self.register_to_config(**register_dict)
|
119 |
+
|
120 |
+
# set models
|
121 |
+
setattr(self, name, module)
|
122 |
+
|
123 |
+
def save_pretrained(self, save_directory: Union[str, os.PathLike]):
|
124 |
+
"""
|
125 |
+
Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
|
126 |
+
a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
|
127 |
+
method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.
|
128 |
+
|
129 |
+
Arguments:
|
130 |
+
save_directory (`str` or `os.PathLike`):
|
131 |
+
Directory to which to save. Will be created if it doesn't exist.
|
132 |
+
"""
|
133 |
+
self.save_config(save_directory)
|
134 |
+
|
135 |
+
model_index_dict = dict(self.config)
|
136 |
+
model_index_dict.pop("_class_name")
|
137 |
+
model_index_dict.pop("_diffusers_version")
|
138 |
+
model_index_dict.pop("_module", None)
|
139 |
+
|
140 |
+
for pipeline_component_name in model_index_dict.keys():
|
141 |
+
sub_model = getattr(self, pipeline_component_name)
|
142 |
+
model_cls = sub_model.__class__
|
143 |
+
|
144 |
+
save_method_name = None
|
145 |
+
# search for the model's base class in LOADABLE_CLASSES
|
146 |
+
for library_name, library_classes in LOADABLE_CLASSES.items():
|
147 |
+
library = importlib.import_module(library_name)
|
148 |
+
for base_class, save_load_methods in library_classes.items():
|
149 |
+
class_candidate = getattr(library, base_class)
|
150 |
+
if issubclass(model_cls, class_candidate):
|
151 |
+
# if we found a suitable base class in LOADABLE_CLASSES then grab its save method
|
152 |
+
save_method_name = save_load_methods[0]
|
153 |
+
break
|
154 |
+
if save_method_name is not None:
|
155 |
+
break
|
156 |
+
|
157 |
+
save_method = getattr(sub_model, save_method_name)
|
158 |
+
save_method(os.path.join(save_directory, pipeline_component_name))
|
159 |
+
|
160 |
+
def to(self, torch_device: Optional[Union[str, torch.device]] = None):
|
161 |
+
if torch_device is None:
|
162 |
+
return self
|
163 |
+
|
164 |
+
module_names, _ = self.extract_init_dict(dict(self.config))
|
165 |
+
for name in module_names.keys():
|
166 |
+
module = getattr(self, name)
|
167 |
+
if isinstance(module, torch.nn.Module):
|
168 |
+
module.to(torch_device)
|
169 |
+
return self
|
170 |
+
|
171 |
+
@property
|
172 |
+
def device(self) -> torch.device:
|
173 |
+
r"""
|
174 |
+
Returns:
|
175 |
+
`torch.device`: The torch device on which the pipeline is located.
|
176 |
+
"""
|
177 |
+
module_names, _ = self.extract_init_dict(dict(self.config))
|
178 |
+
for name in module_names.keys():
|
179 |
+
module = getattr(self, name)
|
180 |
+
if isinstance(module, torch.nn.Module):
|
181 |
+
return module.device
|
182 |
+
return torch.device("cpu")
|
183 |
+
|
184 |
+
@classmethod
|
185 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
186 |
+
r"""
|
187 |
+
Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights.
|
188 |
+
|
189 |
+
The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).
|
190 |
+
|
191 |
+
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
|
192 |
+
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
|
193 |
+
task.
|
194 |
+
|
195 |
+
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
|
196 |
+
weights are discarded.
|
197 |
+
|
198 |
+
Parameters:
|
199 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
200 |
+
Can be either:
|
201 |
+
|
202 |
+
- A string, the *repo id* of a pretrained pipeline hosted inside a model repo on
|
203 |
+
https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like
|
204 |
+
`CompVis/ldm-text2im-large-256`.
|
205 |
+
- A path to a *directory* containing pipeline weights saved using
|
206 |
+
[`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
|
207 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
208 |
+
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
|
209 |
+
will be automatically derived from the model's weights.
|
210 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
211 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
212 |
+
cached versions if they exist.
|
213 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
214 |
+
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
215 |
+
file exists.
|
216 |
+
proxies (`Dict[str, str]`, *optional*):
|
217 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
218 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
219 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
220 |
+
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
221 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
222 |
+
Whether or not to only look at local files (i.e., do not try to download the model).
|
223 |
+
use_auth_token (`str` or *bool*, *optional*):
|
224 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
225 |
+
when running `huggingface-cli login` (stored in `~/.huggingface`).
|
226 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
227 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
228 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
229 |
+
identifier allowed by git.
|
230 |
+
mirror (`str`, *optional*):
|
231 |
+
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
|
232 |
+
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
|
233 |
+
Please refer to the mirror site for more information. specify the folder name here.
|
234 |
+
|
235 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
236 |
+
Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
|
237 |
+
speficic pipeline class. The overritten components are then directly passed to the pipelines `__init__`
|
238 |
+
method. See example below for more information.
|
239 |
+
|
240 |
+
<Tip>
|
241 |
+
|
242 |
+
Passing `use_auth_token=True`` is required when you want to use a private model, *e.g.*
|
243 |
+
`"CompVis/stable-diffusion-v1-4"`
|
244 |
+
|
245 |
+
</Tip>
|
246 |
+
|
247 |
+
<Tip>
|
248 |
+
|
249 |
+
Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
|
250 |
+
this method in a firewalled environment.
|
251 |
+
|
252 |
+
</Tip>
|
253 |
+
|
254 |
+
Examples:
|
255 |
+
|
256 |
+
```py
|
257 |
+
>>> from diffusers import DiffusionPipeline
|
258 |
+
|
259 |
+
>>> # Download pipeline from huggingface.co and cache.
|
260 |
+
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
|
261 |
+
|
262 |
+
>>> # Download pipeline that requires an authorization token
|
263 |
+
>>> # For more information on access tokens, please refer to this section
|
264 |
+
>>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
|
265 |
+
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True)
|
266 |
+
|
267 |
+
>>> # Download pipeline, but overwrite scheduler
|
268 |
+
>>> from diffusers import LMSDiscreteScheduler
|
269 |
+
|
270 |
+
>>> scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
271 |
+
>>> pipeline = DiffusionPipeline.from_pretrained(
|
272 |
+
... "CompVis/stable-diffusion-v1-4", scheduler=scheduler, use_auth_token=True
|
273 |
+
... )
|
274 |
+
```
|
275 |
+
"""
|
276 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
277 |
+
resume_download = kwargs.pop("resume_download", False)
|
278 |
+
proxies = kwargs.pop("proxies", None)
|
279 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
280 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
281 |
+
revision = kwargs.pop("revision", None)
|
282 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
283 |
+
provider = kwargs.pop("provider", None)
|
284 |
+
|
285 |
+
# 1. Download the checkpoints and configs
|
286 |
+
# use snapshot download here to get it working from from_pretrained
|
287 |
+
if not os.path.isdir(pretrained_model_name_or_path):
|
288 |
+
cached_folder = snapshot_download(
|
289 |
+
pretrained_model_name_or_path,
|
290 |
+
cache_dir=cache_dir,
|
291 |
+
resume_download=resume_download,
|
292 |
+
proxies=proxies,
|
293 |
+
local_files_only=local_files_only,
|
294 |
+
use_auth_token=use_auth_token,
|
295 |
+
revision=revision,
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
cached_folder = pretrained_model_name_or_path
|
299 |
+
|
300 |
+
config_dict = cls.get_config_dict(cached_folder)
|
301 |
+
|
302 |
+
# 2. Load the pipeline class, if using custom module then load it from the hub
|
303 |
+
# if we load from explicit class, let's use it
|
304 |
+
if cls != DiffusionPipeline:
|
305 |
+
pipeline_class = cls
|
306 |
+
else:
|
307 |
+
diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
|
308 |
+
pipeline_class = getattr(diffusers_module, config_dict["_class_name"])
|
309 |
+
|
310 |
+
# some modules can be passed directly to the init
|
311 |
+
# in this case they are already instantiated in `kwargs`
|
312 |
+
# extract them here
|
313 |
+
expected_modules = set(inspect.signature(pipeline_class.__init__).parameters.keys())
|
314 |
+
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
|
315 |
+
|
316 |
+
init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
|
317 |
+
|
318 |
+
init_kwargs = {}
|
319 |
+
|
320 |
+
# import it here to avoid circular import
|
321 |
+
from diffusers import pipelines
|
322 |
+
|
323 |
+
# 3. Load each module in the pipeline
|
324 |
+
for name, (library_name, class_name) in init_dict.items():
|
325 |
+
is_pipeline_module = hasattr(pipelines, library_name)
|
326 |
+
loaded_sub_model = None
|
327 |
+
|
328 |
+
# if the model is in a pipeline module, then we load it from the pipeline
|
329 |
+
if name in passed_class_obj:
|
330 |
+
# 1. check that passed_class_obj has correct parent class
|
331 |
+
if not is_pipeline_module:
|
332 |
+
library = importlib.import_module(library_name)
|
333 |
+
class_obj = getattr(library, class_name)
|
334 |
+
importable_classes = LOADABLE_CLASSES[library_name]
|
335 |
+
class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
|
336 |
+
|
337 |
+
expected_class_obj = None
|
338 |
+
for class_name, class_candidate in class_candidates.items():
|
339 |
+
if issubclass(class_obj, class_candidate):
|
340 |
+
expected_class_obj = class_candidate
|
341 |
+
|
342 |
+
if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
|
343 |
+
raise ValueError(
|
344 |
+
f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
|
345 |
+
f" {expected_class_obj}"
|
346 |
+
)
|
347 |
+
else:
|
348 |
+
logger.warn(
|
349 |
+
f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
|
350 |
+
" has the correct type"
|
351 |
+
)
|
352 |
+
|
353 |
+
# set passed class object
|
354 |
+
loaded_sub_model = passed_class_obj[name]
|
355 |
+
elif is_pipeline_module:
|
356 |
+
pipeline_module = getattr(pipelines, library_name)
|
357 |
+
class_obj = getattr(pipeline_module, class_name)
|
358 |
+
importable_classes = ALL_IMPORTABLE_CLASSES
|
359 |
+
class_candidates = {c: class_obj for c in importable_classes.keys()}
|
360 |
+
else:
|
361 |
+
# else we just import it from the library.
|
362 |
+
library = importlib.import_module(library_name)
|
363 |
+
class_obj = getattr(library, class_name)
|
364 |
+
importable_classes = LOADABLE_CLASSES[library_name]
|
365 |
+
class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
|
366 |
+
|
367 |
+
if loaded_sub_model is None:
|
368 |
+
load_method_name = None
|
369 |
+
for class_name, class_candidate in class_candidates.items():
|
370 |
+
if issubclass(class_obj, class_candidate):
|
371 |
+
load_method_name = importable_classes[class_name][1]
|
372 |
+
|
373 |
+
load_method = getattr(class_obj, load_method_name)
|
374 |
+
|
375 |
+
loading_kwargs = {}
|
376 |
+
if issubclass(class_obj, torch.nn.Module):
|
377 |
+
loading_kwargs["torch_dtype"] = torch_dtype
|
378 |
+
if issubclass(class_obj, diffusers.OnnxRuntimeModel):
|
379 |
+
loading_kwargs["provider"] = provider
|
380 |
+
|
381 |
+
# check if the module is in a subdirectory
|
382 |
+
if os.path.isdir(os.path.join(cached_folder, name)):
|
383 |
+
loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
|
384 |
+
else:
|
385 |
+
# else load from the root directory
|
386 |
+
loaded_sub_model = load_method(cached_folder, **loading_kwargs)
|
387 |
+
|
388 |
+
init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionSchedule(...)
|
389 |
+
|
390 |
+
# 4. Instantiate the pipeline
|
391 |
+
model = pipeline_class(**init_kwargs)
|
392 |
+
return model
|
393 |
+
|
394 |
+
@staticmethod
|
395 |
+
def numpy_to_pil(images):
|
396 |
+
"""
|
397 |
+
Convert a numpy image or a batch of images to a PIL image.
|
398 |
+
"""
|
399 |
+
if images.ndim == 3:
|
400 |
+
images = images[None, ...]
|
401 |
+
images = (images * 255).round().astype("uint8")
|
402 |
+
pil_images = [Image.fromarray(image) for image in images]
|
403 |
+
|
404 |
+
return pil_images
|
405 |
+
|
406 |
+
def progress_bar(self, iterable):
|
407 |
+
if not hasattr(self, "_progress_bar_config"):
|
408 |
+
self._progress_bar_config = {}
|
409 |
+
elif not isinstance(self._progress_bar_config, dict):
|
410 |
+
raise ValueError(
|
411 |
+
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
|
412 |
+
)
|
413 |
+
|
414 |
+
return tqdm(iterable, **self._progress_bar_config)
|
415 |
+
|
416 |
+
def set_progress_bar_config(self, **kwargs):
|
417 |
+
self._progress_bar_config = kwargs
|
my_diffusers/pipelines/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import is_onnx_available, is_transformers_available
|
2 |
+
from .ddim import DDIMPipeline
|
3 |
+
from .ddpm import DDPMPipeline
|
4 |
+
from .latent_diffusion_uncond import LDMPipeline
|
5 |
+
from .pndm import PNDMPipeline
|
6 |
+
from .score_sde_ve import ScoreSdeVePipeline
|
7 |
+
from .stochastic_karras_ve import KarrasVePipeline
|
8 |
+
|
9 |
+
|
10 |
+
if is_transformers_available():
|
11 |
+
from .latent_diffusion import LDMTextToImagePipeline
|
12 |
+
from .stable_diffusion import (
|
13 |
+
StableDiffusionImg2ImgPipeline,
|
14 |
+
StableDiffusionInpaintPipeline,
|
15 |
+
StableDiffusionPipeline,
|
16 |
+
)
|
17 |
+
|
18 |
+
if is_transformers_available() and is_onnx_available():
|
19 |
+
from .stable_diffusion import StableDiffusionOnnxPipeline
|
my_diffusers/pipelines/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (828 Bytes). View file
|
|
my_diffusers/pipelines/ddim/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# flake8: noqa
|
2 |
+
from .pipeline_ddim import DDIMPipeline
|
my_diffusers/pipelines/ddim/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (216 Bytes). View file
|
|
my_diffusers/pipelines/ddim/__pycache__/pipeline_ddim.cpython-38.pyc
ADDED
Binary file (3.96 kB). View file
|
|
my_diffusers/pipelines/ddim/pipeline_ddim.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
23 |
+
|
24 |
+
|
25 |
+
class DDIMPipeline(DiffusionPipeline):
|
26 |
+
r"""
|
27 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
28 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
29 |
+
|
30 |
+
Parameters:
|
31 |
+
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
|
32 |
+
scheduler ([`SchedulerMixin`]):
|
33 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
|
34 |
+
[`DDPMScheduler`], or [`DDIMScheduler`].
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self, unet, scheduler):
|
38 |
+
super().__init__()
|
39 |
+
scheduler = scheduler.set_format("pt")
|
40 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
41 |
+
|
42 |
+
@torch.no_grad()
|
43 |
+
def __call__(
|
44 |
+
self,
|
45 |
+
batch_size: int = 1,
|
46 |
+
generator: Optional[torch.Generator] = None,
|
47 |
+
eta: float = 0.0,
|
48 |
+
num_inference_steps: int = 50,
|
49 |
+
output_type: Optional[str] = "pil",
|
50 |
+
return_dict: bool = True,
|
51 |
+
**kwargs,
|
52 |
+
) -> Union[ImagePipelineOutput, Tuple]:
|
53 |
+
r"""
|
54 |
+
Args:
|
55 |
+
batch_size (`int`, *optional*, defaults to 1):
|
56 |
+
The number of images to generate.
|
57 |
+
generator (`torch.Generator`, *optional*):
|
58 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
59 |
+
deterministic.
|
60 |
+
eta (`float`, *optional*, defaults to 0.0):
|
61 |
+
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
|
62 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
63 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
64 |
+
expense of slower inference.
|
65 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
66 |
+
The output format of the generate image. Choose between
|
67 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
|
68 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
|
73 |
+
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
|
74 |
+
generated images.
|
75 |
+
"""
|
76 |
+
|
77 |
+
if "torch_device" in kwargs:
|
78 |
+
device = kwargs.pop("torch_device")
|
79 |
+
warnings.warn(
|
80 |
+
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
|
81 |
+
" Consider using `pipe.to(torch_device)` instead."
|
82 |
+
)
|
83 |
+
|
84 |
+
# Set device as before (to be removed in 0.3.0)
|
85 |
+
if device is None:
|
86 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
87 |
+
self.to(device)
|
88 |
+
|
89 |
+
# eta corresponds to η in paper and should be between [0, 1]
|
90 |
+
|
91 |
+
# Sample gaussian noise to begin loop
|
92 |
+
image = torch.randn(
|
93 |
+
(batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
|
94 |
+
generator=generator,
|
95 |
+
)
|
96 |
+
image = image.to(self.device)
|
97 |
+
|
98 |
+
# set step values
|
99 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
100 |
+
|
101 |
+
for t in self.progress_bar(self.scheduler.timesteps):
|
102 |
+
# 1. predict noise model_output
|
103 |
+
model_output = self.unet(image, t).sample
|
104 |
+
|
105 |
+
# 2. predict previous mean of image x_t-1 and add variance depending on eta
|
106 |
+
# do x_t -> x_t-1
|
107 |
+
image = self.scheduler.step(model_output, t, image, eta).prev_sample
|
108 |
+
|
109 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
110 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
111 |
+
if output_type == "pil":
|
112 |
+
image = self.numpy_to_pil(image)
|
113 |
+
|
114 |
+
if not return_dict:
|
115 |
+
return (image,)
|
116 |
+
|
117 |
+
return ImagePipelineOutput(images=image)
|
my_diffusers/pipelines/ddpm/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# flake8: noqa
|
2 |
+
from .pipeline_ddpm import DDPMPipeline
|
my_diffusers/pipelines/ddpm/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (216 Bytes). View file
|
|
my_diffusers/pipelines/ddpm/__pycache__/pipeline_ddpm.cpython-38.pyc
ADDED
Binary file (3.49 kB). View file
|
|
my_diffusers/pipelines/ddpm/pipeline_ddpm.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
23 |
+
|
24 |
+
|
25 |
+
class DDPMPipeline(DiffusionPipeline):
|
26 |
+
r"""
|
27 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
28 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
29 |
+
|
30 |
+
Parameters:
|
31 |
+
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
|
32 |
+
scheduler ([`SchedulerMixin`]):
|
33 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
|
34 |
+
[`DDPMScheduler`], or [`DDIMScheduler`].
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self, unet, scheduler):
|
38 |
+
super().__init__()
|
39 |
+
scheduler = scheduler.set_format("pt")
|
40 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
41 |
+
|
42 |
+
@torch.no_grad()
|
43 |
+
def __call__(
|
44 |
+
self,
|
45 |
+
batch_size: int = 1,
|
46 |
+
generator: Optional[torch.Generator] = None,
|
47 |
+
output_type: Optional[str] = "pil",
|
48 |
+
return_dict: bool = True,
|
49 |
+
**kwargs,
|
50 |
+
) -> Union[ImagePipelineOutput, Tuple]:
|
51 |
+
r"""
|
52 |
+
Args:
|
53 |
+
batch_size (`int`, *optional*, defaults to 1):
|
54 |
+
The number of images to generate.
|
55 |
+
generator (`torch.Generator`, *optional*):
|
56 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
57 |
+
deterministic.
|
58 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
59 |
+
The output format of the generate image. Choose between
|
60 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
|
61 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
62 |
+
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
|
66 |
+
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
|
67 |
+
generated images.
|
68 |
+
"""
|
69 |
+
if "torch_device" in kwargs:
|
70 |
+
device = kwargs.pop("torch_device")
|
71 |
+
warnings.warn(
|
72 |
+
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
|
73 |
+
" Consider using `pipe.to(torch_device)` instead."
|
74 |
+
)
|
75 |
+
|
76 |
+
# Set device as before (to be removed in 0.3.0)
|
77 |
+
if device is None:
|
78 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
79 |
+
self.to(device)
|
80 |
+
|
81 |
+
# Sample gaussian noise to begin loop
|
82 |
+
image = torch.randn(
|
83 |
+
(batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
|
84 |
+
generator=generator,
|
85 |
+
)
|
86 |
+
image = image.to(self.device)
|
87 |
+
|
88 |
+
# set step values
|
89 |
+
self.scheduler.set_timesteps(1000)
|
90 |
+
|
91 |
+
for t in self.progress_bar(self.scheduler.timesteps):
|
92 |
+
# 1. predict noise model_output
|
93 |
+
model_output = self.unet(image, t).sample
|
94 |
+
|
95 |
+
# 2. compute previous image: x_t -> t_t-1
|
96 |
+
image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample
|
97 |
+
|
98 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
99 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
100 |
+
if output_type == "pil":
|
101 |
+
image = self.numpy_to_pil(image)
|
102 |
+
|
103 |
+
if not return_dict:
|
104 |
+
return (image,)
|
105 |
+
|
106 |
+
return ImagePipelineOutput(images=image)
|
my_diffusers/pipelines/latent_diffusion/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa
|
2 |
+
from ...utils import is_transformers_available
|
3 |
+
|
4 |
+
|
5 |
+
if is_transformers_available():
|
6 |
+
from .pipeline_latent_diffusion import LDMBertModel, LDMTextToImagePipeline
|