from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..modeling_utils import ModelMixin from ..utils import BaseOutput from .embeddings import TimestepEmbedding, Timesteps from .unet_blocks import UNetMidBlock2DCrossAttn, get_down_block, get_up_block @dataclass class UNet2DConditionOutput(BaseOutput): """ Args: sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model. """ sample: torch.FloatTensor class UNet2DConditionModel(ModelMixin, ConfigMixin): r""" UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep and returns sample shaped output. This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library implements for all the model (such as downloading or saving, etc.) Parameters: sample_size (`int`, *optional*): The size of the input sample. in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. flip_sin_to_cos (`bool`, *optional*, defaults to `False`): Whether to flip the sin to cos in the time embedding. freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): The tuple of downsample blocks to use. up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): The tuple of upsample blocks to use. block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): The tuple of output channels for each block. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. """ @register_to_config def __init__( self, sample_size: Optional[int] = None, in_channels: int = 4, out_channels: int = 4, center_input_sample: bool = False, flip_sin_to_cos: bool = True, freq_shift: int = 0, down_block_types: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ), up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), block_out_channels: Tuple[int] = (320, 640, 1280, 1280), layers_per_block: int = 2, downsample_padding: int = 1, mid_block_scale_factor: float = 1, act_fn: str = "silu", norm_num_groups: int = 32, norm_eps: float = 1e-5, cross_attention_dim: int = 1280, attention_head_dim: int = 8, ): super().__init__() self.sample_size = sample_size time_embed_dim = block_out_channels[0] * 4 # input self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) # time self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) timestep_input_dim = block_out_channels[0] self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) self.down_blocks = nn.ModuleList([]) self.mid_block = None self.up_blocks = nn.ModuleList([]) # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attention_head_dim, downsample_padding=downsample_padding, ) self.down_blocks.append(down_block) # mid self.mid_block = UNetMidBlock2DCrossAttn( in_channels=block_out_channels[-1], temb_channels=time_embed_dim, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_time_scale_shift="default", cross_attention_dim=cross_attention_dim, attn_num_head_channels=attention_head_dim, resnet_groups=norm_num_groups, ) # up reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] is_final_block = i == len(block_out_channels) - 1 up_block = get_up_block( up_block_type, num_layers=layers_per_block + 1, in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=time_embed_dim, add_upsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attention_head_dim, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) self.conv_act = nn.SiLU() self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) def set_attention_slice(self, slice_size): if slice_size is not None and self.config.attention_head_dim % slice_size != 0: raise ValueError( f"Make sure slice_size {slice_size} is a divisor of " f"the number of heads used in cross_attention {self.config.attention_head_dim}" ) if slice_size is not None and slice_size > self.config.attention_head_dim: raise ValueError( f"Chunk_size {slice_size} has to be smaller or equal to " f"the number of heads used in cross_attention {self.config.attention_head_dim}" ) for block in self.down_blocks: if hasattr(block, "attentions") and block.attentions is not None: block.set_attention_slice(slice_size) self.mid_block.set_attention_slice(slice_size) for block in self.up_blocks: if hasattr(block, "attentions") and block.attentions is not None: block.set_attention_slice(slice_size) def forward( self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, return_dict: bool = True, ) -> Union[UNet2DConditionOutput, Tuple]: """r Args: sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor timestep (`torch.FloatTensor` or `float` or `int): (batch) timesteps encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ # 0. center input if necessary if self.config.center_input_sample: sample = 2 * sample - 1.0 # 1. time timesteps = timestep if not torch.is_tensor(timesteps): timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: timesteps = timesteps.to(dtype=torch.float16) timesteps = timesteps[None].to(device=sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = self.time_proj(timesteps) # print(t_emb.dtype) t_emb = t_emb.to(sample.dtype).to(sample.device) emb = self.time_embedding(t_emb) # 2. pre-process sample = self.conv_in(sample) # 3. down down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None: # print(sample.dtype, emb.dtype, encoder_hidden_states.dtype) sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states ) else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb) down_block_res_samples += res_samples # 4. mid sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states) # 5. up for upsample_block in self.up_blocks: res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, ) else: sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples) # 6. post-process # make sure hidden states is in float32 # when running in half-precision sample = self.conv_norm_out(sample).type(sample.dtype) sample = self.conv_act(sample) sample = self.conv_out(sample) if not return_dict: return (sample,) return UNet2DConditionOutput(sample=sample)