Spaces:
Running
Running
File size: 12,384 Bytes
aada8de f5303bc aada8de f5303bc aada8de f5303bc aada8de 409ae36 c29a860 aada8de 409ae36 aada8de 89d6f25 aada8de 409ae36 f5303bc aada8de 8d950ab aada8de 409ae36 f5303bc aada8de f5303bc aada8de f5303bc aada8de f5303bc 89d6f25 aada8de f5303bc 409ae36 f5303bc aada8de 26602a7 f5303bc 26602a7 409ae36 f5303bc 409ae36 f5303bc 409ae36 f5303bc 409ae36 aada8de 8d950ab 409ae36 aada8de af47d97 aada8de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import gradio as gr
import ipdb
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
EVAL_COLS,
EVAL_TYPES,
ModelInfoColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_model_info_df, get_merged_df
from src.submission.submit import add_new_eval
from src.utils import norm_sNavie, pivot_df
# import ipdb
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
# try:
# print(EVAL_REQUESTS_PATH)
# snapshot_download(
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
# token=TOKEN
# )
# except Exception:
# restart_space()
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
# token=TOKEN
# )
# except Exception:
# restart_space()
# # LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# df = pd.read_csv('LOTSAv2_EvalBenchmark(Long).csv')
# # Step 2: Pivot the DataFrame
# LEADERBOARD_DF = df.pivot_table(index='model',
# columns='dataset',
# values='eval_metrics/MAE[0.5]',
# aggfunc='first')
# LEADERBOARD_DF.drop(columns=['ALL'], inplace=True)
#
# # Reset the index if you want the model column to be part of the DataFrame
# LEADERBOARD_DF.reset_index(inplace=True)
# # Step 3: noramlize the values
# # ipdb.set_trace()
# LEADERBOARD_DF = norm_sNavie(LEADERBOARD_DF)
#
# # LEADERBOARD_DF['Average'] = LEADERBOARD_DF.mean(axis=1)
# # LEADERBOARD_DF.insert(1, 'Average', LEADERBOARD_DF.pop('Average'))
# # LEADERBOARD_DF = LEADERBOARD_DF.sort_values(by=['Average'], ascending=True)
# print(f"The leaderboard is {LEADERBOARD_DF}")
# print(f'Columns: ', LEADERBOARD_DF.columns)
# LEADERBOARD_DF = pd.read_csv('pivoted_df.csv')
domain_df = pivot_df('results/grouped_results_by_domain.csv', tab_name='domain')
print(f'Domain dataframe is {domain_df}')
freq_df = pivot_df('results/grouped_results_by_frequency.csv', tab_name='frequency')
print(f'Freq dataframe is {freq_df}')
term_length_df = pivot_df('results/grouped_results_by_term_length.csv', tab_name='term_length')
print(f'Term length dataframe is {term_length_df}')
variate_type_df = pivot_df('results/grouped_results_by_univariate.csv', tab_name='univariate')
print(f'Variate type dataframe is {variate_type_df}')
model_info_df = get_model_info_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH)
# domain_df = get_merged_df(domain_df, model_info_df)
# print('Merged domain df: ', domain_df)
# freq_df = get_merged_df(freq_df, model_info_df)
# print('Merged freq df: ', freq_df)
# term_length_df = get_merged_df(term_length_df, model_info_df)
# print('Merged term length df: ', term_length_df)
# variate_type_df = get_merged_df(variate_type_df, model_info_df)
# print('Merged variate type df: ', variate_type_df)
# (
# finished_eval_queue_df,
# running_eval_queue_df,
# pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(ori_dataframe, model_info_df):
if ori_dataframe is None or ori_dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
model_info_col_list = [c.name for c in fields(ModelInfoColumn) if c.displayed_by_default if c.name not in ['#Params (B)', 'available_on_hub', 'hub', 'Model sha','Hub License']]
default_selection_list = list(ori_dataframe.columns) + model_info_col_list
print('default_selection_list: ', default_selection_list)
# ipdb.set_trace()
# default_selection_list = [col for col in default_selection_list if col not in ['#Params (B)', 'available_on_hub', 'hub', 'Model sha','Hub License']]
merged_df = get_merged_df(ori_dataframe, model_info_df)
new_cols = ['T'] + [col for col in merged_df.columns if col != 'T']
merged_df = merged_df[new_cols]
print('Merged df: ', merged_df)
return Leaderboard(
value=merged_df,
# datatype=[c.type for c in fields(ModelInfoColumn)],
select_columns=SelectColumns(
default_selection=default_selection_list,
# default_selection=[c.name for c in fields(ModelInfoColumn) if
# c.displayed_by_default and c.name not in ['params', 'available_on_hub', 'hub',
# 'Model sha', 'Hub License']],
# default_selection=list(dataframe.columns),
cant_deselect=[c.name for c in fields(ModelInfoColumn) if c.never_hidden],
label="Select Columns to Display:",
# How to uncheck??
),
hide_columns=[c.name for c in fields(ModelInfoColumn) if c.hidden],
search_columns=['model'],
# hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
# filter_columns=[
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
# ColumnFilter(
# AutoEvalColumn.params.name,
# type="slider",
# min=0.01,
# max=500,
# label="Select the number of parameters (B)",
# ),
# ColumnFilter(
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=False
# ),
# ],
filter_columns=[
ColumnFilter(ModelInfoColumn.model_type.name, type="checkboxgroup", label="Model types"),
],
# bool_checkboxgroup_label="Hide models",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
By Domain", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(domain_df, model_info_df)
print(f"FINAL Domain LEADERBOARD 1 {domain_df}")
with gr.TabItem("π
By Frequency", elem_id="llm-benchmark-tab-table", id=1):
leaderboard = init_leaderboard(freq_df, model_info_df)
print(f"FINAL Frequency LEADERBOARD 1 {freq_df}")
with gr.TabItem("π
By term length", elem_id="llm-benchmark-tab-table", id=2):
leaderboard = init_leaderboard(term_length_df, model_info_df)
print(f"FINAL term length LEADERBOARD 1 {term_length_df}")
with gr.TabItem("π
By variate type", elem_id="llm-benchmark-tab-table", id=3):
leaderboard = init_leaderboard(variate_type_df, model_info_df)
print(f"FINAL LEADERBOARD 1 {variate_type_df}")
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=5):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
#
# with gr.Column():
# with gr.Accordion(
# f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# finished_eval_table = gr.components.Dataframe(
# value=finished_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# running_eval_table = gr.components.Dataframe(
# value=running_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
#
# with gr.Accordion(
# f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# pending_eval_table = gr.components.Dataframe(
# value=pending_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Row():
# gr.Markdown("# βοΈβ¨ Submit your model outputs !", elem_classes="markdown-text")
# gr.Markdown(
# "Send your model outputs for all the models using the ContextualBench code and email them to us at xnguyen@salesforce.com ",
# elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name_textbox = gr.Textbox(label="Model name")
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
# model_type = gr.Dropdown(
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
# label="Model type",
# multiselect=False,
# value=None,
# interactive=True,
# )
# with gr.Column():
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# add_new_eval,
# [
# model_name_textbox,
# base_model_name_textbox,
# revision_name_textbox,
# precision,
# weight_type,
# model_type,
# ],
# submission_result,
# )
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |