GIFT-Eval / app.py
juncliu's picture
fix typo
4b38e69
raw
history blame
13.1 kB
import gradio as gr
import ipdb
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
EVAL_COLS,
EVAL_TYPES,
ModelInfoColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_model_info_df, get_merged_df
from src.submission.submit import add_new_eval
from src.utils import norm_sNavie, pivot_df, get_grouped_dfs, pivot_existed_df, rename_metrics, format_df
# import ipdb
def restart_space():
API.restart_space(repo_id=REPO_ID)
# ## Space initialisation
# try:
# print(EVAL_REQUESTS_PATH)
# snapshot_download(
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
# token=TOKEN
# )
# except Exception:
# restart_space()
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
# token=TOKEN
# )
# except Exception:
# restart_space()
# # LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# df = pd.read_csv('LOTSAv2_EvalBenchmark(Long).csv')
# # Step 2: Pivot the DataFrame
# LEADERBOARD_DF = df.pivot_table(index='model',
# columns='dataset',
# values='eval_metrics/MAE[0.5]',
# aggfunc='first')
# LEADERBOARD_DF.drop(columns=['ALL'], inplace=True)
#
# # Reset the index if you want the model column to be part of the DataFrame
# LEADERBOARD_DF.reset_index(inplace=True)
# # Step 3: noramlize the values
# # ipdb.set_trace()
# LEADERBOARD_DF = norm_sNavie(LEADERBOARD_DF)
#
# # LEADERBOARD_DF['Average'] = LEADERBOARD_DF.mean(axis=1)
# # LEADERBOARD_DF.insert(1, 'Average', LEADERBOARD_DF.pop('Average'))
# # LEADERBOARD_DF = LEADERBOARD_DF.sort_values(by=['Average'], ascending=True)
# print(f"The leaderboard is {LEADERBOARD_DF}")
# print(f'Columns: ', LEADERBOARD_DF.columns)
# LEADERBOARD_DF = pd.read_csv('pivoted_df.csv')
# domain_df = pivot_df('results/grouped_results_by_domain.csv', tab_name='domain')
# print(f'Domain dataframe is {domain_df}')
# freq_df = pivot_df('results/grouped_results_by_frequency.csv', tab_name='frequency')
# print(f'Freq dataframe is {freq_df}')
# term_length_df = pivot_df('results/grouped_results_by_term_length.csv', tab_name='term_length')
# print(f'Term length dataframe is {term_length_df}')
# variate_type_df = pivot_df('results/grouped_results_by_univariate.csv', tab_name='univariate')
# print(f'Variate type dataframe is {variate_type_df}')
# model_info_df = get_model_info_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH)
grouped_dfs = get_grouped_dfs()
domain_df, freq_df, term_length_df, variate_type_df, overall_df = grouped_dfs['domain'], grouped_dfs['frequency'], grouped_dfs['term_length'], grouped_dfs['univariate'], grouped_dfs['overall']
overall_df = rename_metrics(overall_df)
overall_df = format_df(overall_df)
domain_df = pivot_existed_df(domain_df, tab_name='domain')
print(f'Domain dataframe is {domain_df}')
freq_df = pivot_existed_df(freq_df, tab_name='frequency')
print(f'Freq dataframe is {freq_df}')
term_length_df = pivot_existed_df(term_length_df, tab_name='term_length')
print(f'Term length dataframe is {term_length_df}')
variate_type_df = pivot_existed_df(variate_type_df, tab_name='univariate')
print(f'Variate type dataframe is {variate_type_df}')
model_info_df = get_model_info_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH)
# (
# finished_eval_queue_df,
# running_eval_queue_df,
# pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(ori_dataframe, model_info_df):
if ori_dataframe is None or ori_dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
model_info_col_list = [c.name for c in fields(ModelInfoColumn) if c.displayed_by_default if c.name not in ['#Params (B)', 'available_on_hub', 'hub', 'Model sha','Hub License']]
default_selection_list = list(ori_dataframe.columns) + model_info_col_list
print('default_selection_list: ', default_selection_list)
# ipdb.set_trace()
# default_selection_list = [col for col in default_selection_list if col not in ['#Params (B)', 'available_on_hub', 'hub', 'Model sha','Hub License']]
merged_df = get_merged_df(ori_dataframe, model_info_df)
new_cols = ['T'] + [col for col in merged_df.columns if col != 'T']
merged_df = merged_df[new_cols]
print('Merged df: ', merged_df)
return Leaderboard(
value=merged_df,
# datatype=[c.type for c in fields(ModelInfoColumn)],
select_columns=SelectColumns(
default_selection=default_selection_list,
# default_selection=[c.name for c in fields(ModelInfoColumn) if
# c.displayed_by_default and c.name not in ['params', 'available_on_hub', 'hub',
# 'Model sha', 'Hub License']],
# default_selection=list(dataframe.columns),
cant_deselect=[c.name for c in fields(ModelInfoColumn) if c.never_hidden],
label="Select Columns to Display:",
# How to uncheck??
),
hide_columns=[c.name for c in fields(ModelInfoColumn) if c.hidden],
search_columns=['model'],
# hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
# filter_columns=[
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
# ColumnFilter(
# AutoEvalColumn.params.name,
# type="slider",
# min=0.01,
# max=500,
# label="Select the number of parameters (B)",
# ),
# ColumnFilter(
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=False
# ),
# ],
filter_columns=[
ColumnFilter(ModelInfoColumn.model_type.name, type="checkboxgroup", label="Model types"),
],
# bool_checkboxgroup_label="",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem('πŸ… Overall', elem_id="llm-benchmark-tab-table", id=5):
leaderboard = init_leaderboard(overall_df, model_info_df)
print(f'FINAL Overall LEADERBOARD {overall_df}')
with gr.TabItem("πŸ… By Domain", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(domain_df, model_info_df)
print(f"FINAL Domain LEADERBOARD 1 {domain_df}")
with gr.TabItem("πŸ… By Frequency", elem_id="llm-benchmark-tab-table", id=1):
leaderboard = init_leaderboard(freq_df, model_info_df)
print(f"FINAL Frequency LEADERBOARD 1 {freq_df}")
with gr.TabItem("πŸ… By Term Length", elem_id="llm-benchmark-tab-table", id=2):
leaderboard = init_leaderboard(term_length_df, model_info_df)
print(f"FINAL term length LEADERBOARD 1 {term_length_df}")
with gr.TabItem("πŸ… By Variate Type", elem_id="llm-benchmark-tab-table", id=3):
leaderboard = init_leaderboard(variate_type_df, model_info_df)
print(f"FINAL LEADERBOARD 1 {variate_type_df}")
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=5):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
#
# with gr.Column():
# with gr.Accordion(
# f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# finished_eval_table = gr.components.Dataframe(
# value=finished_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# running_eval_table = gr.components.Dataframe(
# value=running_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
#
# with gr.Accordion(
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# pending_eval_table = gr.components.Dataframe(
# value=pending_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Row():
# gr.Markdown("# βœ‰οΈβœ¨ Submit your model outputs !", elem_classes="markdown-text")
# gr.Markdown(
# "Send your model outputs for all the models using the ContextualBench code and email them to us at xnguyen@salesforce.com ",
# elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name_textbox = gr.Textbox(label="Model name")
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
# model_type = gr.Dropdown(
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
# label="Model type",
# multiselect=False,
# value=None,
# interactive=True,
# )
# with gr.Column():
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# add_new_eval,
# [
# model_name_textbox,
# base_model_name_textbox,
# revision_name_textbox,
# precision,
# weight_type,
# model_type,
# ],
# submission_result,
# )
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()