Spaces:
Running
Running
import json | |
import os | |
import pandas as pd | |
from src.display.formatting import has_no_nan_values, make_clickable_model | |
from src.display.utils import EvalQueueColumn | |
from src.leaderboard.read_evals import get_model_info | |
import ipdb | |
def get_model_info_df(results_path: str, requests_path: str, cols: list=[], benchmark_cols: list=[]) -> pd.DataFrame: | |
"""Creates a dataframe from all the individual experiment results""" | |
raw_data = get_model_info(results_path, requests_path) | |
all_data_json = [v.to_dict() for v in raw_data] | |
print(f"The raw data is {all_data_json}") | |
df = pd.DataFrame.from_records(all_data_json) | |
print(f"DF for Model Info ********** {df}") | |
return df | |
def get_merged_df(result_df: pd.DataFrame, model_info_df: pd.DataFrame) -> pd.DataFrame: | |
"""Merges the model info dataframe with the results dataframe""" | |
merged_df = pd.merge(model_info_df, result_df, on='model', how='inner') | |
merged_df = merged_df.drop(columns=['model']) | |
merged_df = merged_df.rename(columns={'model_w_link': 'model'}) | |
return merged_df | |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
"""Creates a dataframe from all the individual experiment results""" | |
raw_data = get_raw_eval_results(results_path, requests_path) | |
# raw_data = get_raw_eval_results(results_path, requests_path) | |
# print('results_path:', results_path) | |
# all_data_json = [v.to_dict() for v in raw_data] | |
# print(f"The raw data is {all_data_json}") | |
# | |
# df = pd.DataFrame.from_records(all_data_json) | |
df = pd.read_csv(results_path) | |
# df = pd.read_csv('LOTSAv2_EvalBenchmark(Long).csv') | |
# Step 2: Pivot the DataFrame | |
df = df.pivot_table(index='model', | |
columns='dataset', | |
values='eval_metrics/MAE[0.5]', | |
aggfunc='first') | |
df.drop(columns=['ALL'], inplace=True) | |
df['Average'] = df.mean(axis=1) | |
# Reset the index if you want the model column to be part of the DataFrame | |
df.reset_index(inplace=True) | |
print(f"DF at stage 1 ********** {df}") | |
# ipdb.set_trace() | |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
# df = df.sort_values(by=[AutoEvalColumn.__dataclass_fields__['average'].name], ascending=False) | |
print(f"DF at stage 2 ********** {df}") | |
df = df[cols].round(decimals=2) | |
print(f"DF at stage 3 ********** {df}") | |
# filter out if any of the benchmarks have not been produced | |
df = df[has_no_nan_values(df, benchmark_cols)] | |
return df | |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
"""Creates the different dataframes for the evaluation queues requestes""" | |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
all_evals = [] | |
for entry in entries: | |
if ".json" in entry: | |
file_path = os.path.join(save_path, entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
elif ".md" not in entry: | |
# this is a folder | |
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] | |
for sub_entry in sub_entries: | |
file_path = os.path.join(save_path, entry, sub_entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
return df_finished[cols], df_running[cols], df_pending[cols] | |