Spaces:
Running
Running
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
import pandas as pd | |
from src.about import Tasks | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
## Leaderboard columns | |
model_info_dict = [] | |
# Init column for the model properties | |
model_info_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) | |
model_info_dict.append(["model", ColumnContent, ColumnContent("model", "markdown", True, never_hidden=True)]) | |
# Model information | |
model_info_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, True)]) | |
# model_info_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) | |
# model_info_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
model_info_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, True)]) | |
model_info_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False, True)]) | |
model_info_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False, True)]) | |
model_info_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False, True)]) | |
model_info_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) | |
# model_info_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
ModelInfoColumn = make_dataclass("ModelInfoColumn", model_info_dict, frozen=True) | |
## For the queue columns in the submission tab | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
revision = ColumnContent("revision", "str", True) | |
private = ColumnContent("private", "bool", True) | |
precision = ColumnContent("precision", "str", True) | |
weight_type = ColumnContent("weight_type", "str", "Original") | |
status = ColumnContent("status", "str", True) | |
## All the model information that we might need | |
class ModelDetails: | |
name: str | |
display_name: str = "" | |
symbol: str = "" # emoji | |
class ModelType(Enum): | |
PT = ModelDetails(name="π’ pretrained", symbol="π’") | |
FT = ModelDetails(name="πΆ fine-tuned", symbol="πΆ") | |
DL = ModelDetails(name="π· deep-learning", symbol="π·") | |
ST = ModelDetails(name="π£ statistical", symbol="π£") | |
Unknown = ModelDetails(name="", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(type): | |
if "fine-tuned" in type or "πΆ" in type: | |
return ModelType.FT | |
if "pretrained" in type or "π’" in type: | |
return ModelType.PT | |
if "deep-learning" in type or "π¦" in type: | |
return ModelType.DL | |
if "statistical" in type or "π£" in type: | |
return ModelType.ST | |
return ModelType.Unknown | |
class WeightType(Enum): | |
Adapter = ModelDetails("Adapter") | |
Original = ModelDetails("Original") | |
Delta = ModelDetails("Delta") | |
class Precision(Enum): | |
float16 = ModelDetails("float16") | |
bfloat16 = ModelDetails("bfloat16") | |
Unknown = ModelDetails("?") | |
def from_str(precision): | |
if precision in ["torch.float16", "float16"]: | |
return Precision.float16 | |
if precision in ["torch.bfloat16", "bfloat16"]: | |
return Precision.bfloat16 | |
return Precision.Unknown | |
# Column selection | |
MODEL_INFO_COLS = [c.name for c in fields(ModelInfoColumn) if not c.hidden] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |