Spaces:
Running
Running
fix typo
Browse files- app.py +1 -1
- src/utils.py +5 -3
app.py
CHANGED
@@ -151,7 +151,7 @@ def init_leaderboard(ori_dataframe, model_info_df):
|
|
151 |
filter_columns=[
|
152 |
ColumnFilter(ModelInfoColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
153 |
],
|
154 |
-
# bool_checkboxgroup_label="
|
155 |
interactive=False,
|
156 |
)
|
157 |
|
|
|
151 |
filter_columns=[
|
152 |
ColumnFilter(ModelInfoColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
153 |
],
|
154 |
+
# bool_checkboxgroup_label="",
|
155 |
interactive=False,
|
156 |
)
|
157 |
|
src/utils.py
CHANGED
@@ -46,7 +46,8 @@ def pivot_df(file_name, tab_name):
|
|
46 |
def rename_metrics(df):
|
47 |
df = df.rename(columns={
|
48 |
'eval_metrics/MAPE[0.5]': 'MAPE',
|
49 |
-
'eval_metrics/mean_weighted_sum_quantile_loss': 'CRPS'
|
|
|
50 |
})
|
51 |
return df
|
52 |
|
@@ -66,7 +67,8 @@ def pivot_existed_df(df, tab_name):
|
|
66 |
df_melted = pd.melt(df, id_vars=[tab_name, 'model'], var_name='metric', value_name='value')
|
67 |
df_melted['metric'] = df_melted['metric'].replace({
|
68 |
'eval_metrics/MAPE[0.5]': 'MAPE',
|
69 |
-
'eval_metrics/mean_weighted_sum_quantile_loss': 'CRPS'
|
|
|
70 |
})
|
71 |
df_pivot = df_melted.pivot_table(index='model', columns=[tab_name, 'metric'], values='value')
|
72 |
df_pivot.columns = [f'{tab_name} ({metric})' for tab_name, metric in df_pivot.columns]
|
@@ -144,7 +146,7 @@ def get_grouped_dfs(root_dir='results', ds_properties='results/dataset_propertie
|
|
144 |
METRIC_CHOICES = ["eval_metrics/MAPE[0.5]", "eval_metrics/mean_weighted_sum_quantile_loss", "rank"]
|
145 |
|
146 |
grouped_results_overall = df.groupby(['model'])[METRIC_CHOICES].mean()
|
147 |
-
|
148 |
# grouped_results.to_csv(f'artefacts/grouped_results_by_model.csv')
|
149 |
grouped_dfs = {}
|
150 |
for col_name in ["domain", 'term_length', 'frequency', 'univariate']:
|
|
|
46 |
def rename_metrics(df):
|
47 |
df = df.rename(columns={
|
48 |
'eval_metrics/MAPE[0.5]': 'MAPE',
|
49 |
+
'eval_metrics/mean_weighted_sum_quantile_loss': 'CRPS',
|
50 |
+
'rank': 'Rank'
|
51 |
})
|
52 |
return df
|
53 |
|
|
|
67 |
df_melted = pd.melt(df, id_vars=[tab_name, 'model'], var_name='metric', value_name='value')
|
68 |
df_melted['metric'] = df_melted['metric'].replace({
|
69 |
'eval_metrics/MAPE[0.5]': 'MAPE',
|
70 |
+
'eval_metrics/mean_weighted_sum_quantile_loss': 'CRPS',
|
71 |
+
'rank': 'Rank',
|
72 |
})
|
73 |
df_pivot = df_melted.pivot_table(index='model', columns=[tab_name, 'metric'], values='value')
|
74 |
df_pivot.columns = [f'{tab_name} ({metric})' for tab_name, metric in df_pivot.columns]
|
|
|
146 |
METRIC_CHOICES = ["eval_metrics/MAPE[0.5]", "eval_metrics/mean_weighted_sum_quantile_loss", "rank"]
|
147 |
|
148 |
grouped_results_overall = df.groupby(['model'])[METRIC_CHOICES].mean()
|
149 |
+
# grouped_results_overall = grouped_results_overall.rename(columns={'model':'Model'})
|
150 |
# grouped_results.to_csv(f'artefacts/grouped_results_by_model.csv')
|
151 |
grouped_dfs = {}
|
152 |
for col_name in ["domain", 'term_length', 'frequency', 'univariate']:
|