juncliu commited on
Commit
ccb6d6d
1 Parent(s): 5e6e69e

update model config and number display

Browse files
results/auto_arima/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
  "model": "auto_arima",
3
- "model_type": "deep-learning",
4
  "model_dtype": "float32"
5
  }
 
1
  {
2
  "model": "auto_arima",
3
+ "model_type": "statistical",
4
  "model_dtype": "float32"
5
  }
results/auto_ets/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
  "model": "auto_ets",
3
- "model_type": "deep-learning",
4
  "model_dtype": "float32"
5
  }
 
1
  {
2
  "model": "auto_ets",
3
+ "model_type": "statistical",
4
  "model_dtype": "float32"
5
  }
results/auto_theta/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
  "model": "auto_theta",
3
- "model_type": "deep-learning",
4
  "model_dtype": "float32"
5
  }
 
1
  {
2
  "model": "auto_theta",
3
+ "model_type": "statistical",
4
  "model_dtype": "float32"
5
  }
src/utils.py CHANGED
@@ -2,6 +2,17 @@ import pandas as pd
2
  import os
3
  import re
4
 
 
 
 
 
 
 
 
 
 
 
 
5
  def norm_sNavie(df):
6
  df_normalized = df.copy()
7
  seasonal_naive_row = df[df['model'] == 'seasonal_naive'].iloc[0]
@@ -47,7 +58,8 @@ def pivot_existed_df(df, tab_name):
47
  df_pivot = df_melted.pivot_table(index='model', columns=[tab_name, 'metric'], values='value')
48
  df_pivot.columns = [f'{tab_name} ({metric})' for tab_name, metric in df_pivot.columns]
49
  df_pivot = df_pivot.reset_index()
50
- df_pivot = df_pivot.round(3)
 
51
  return df_pivot
52
 
53
 
 
2
  import os
3
  import re
4
 
5
+ # Define the formatting function
6
+ def format_number(num):
7
+ # Check if the value is numeric
8
+ if isinstance(num, (int, float)):
9
+ if abs(num) >= 10**2:
10
+ return f"{num:.1e}"
11
+ else:
12
+ return f"{num:.3f}"
13
+ # Return non-numeric values as-is
14
+ return num
15
+
16
  def norm_sNavie(df):
17
  df_normalized = df.copy()
18
  seasonal_naive_row = df[df['model'] == 'seasonal_naive'].iloc[0]
 
58
  df_pivot = df_melted.pivot_table(index='model', columns=[tab_name, 'metric'], values='value')
59
  df_pivot.columns = [f'{tab_name} ({metric})' for tab_name, metric in df_pivot.columns]
60
  df_pivot = df_pivot.reset_index()
61
+ # df_pivot = df_pivot.round(3)
62
+ df_pivot = df_pivot.applymap(format_number)
63
  return df_pivot
64
 
65