Spaces:
Running
Running
update code
Browse files- results/Chronos_small/config.json +2 -1
- results/Moirai_base/config.json +2 -1
- results/Moirai_large/config.json +2 -1
- results/Moirai_small/config.json +2 -1
- results/TTM-R2/config.json +2 -1
- results/chronos_base/config.json +2 -1
- results/chronos_bolt_base/config.json +2 -1
- results/chronos_bolt_small/config.json +2 -1
- results/chronos_large/config.json +2 -1
- results/timesfm_2_0_500m/config.json +2 -1
- src/display/formatting.py +11 -3
- src/leaderboard/read_evals.py +5 -2
results/Chronos_small/config.json
CHANGED
@@ -2,5 +2,6 @@
|
|
2 |
"model": "Chronos_small",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
-
"model_link": "https://huggingface.co/amazon/chronos-t5-small"
|
|
|
6 |
}
|
|
|
2 |
"model": "Chronos_small",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
+
"model_link": "https://huggingface.co/amazon/chronos-t5-small",
|
6 |
+
"code_link": "https://github.com/SalesforceAIResearch/gift-eval/blob/main/notebooks/chronos.ipynb"
|
7 |
}
|
results/Moirai_base/config.json
CHANGED
@@ -2,5 +2,6 @@
|
|
2 |
"model": "Moirai_base",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
-
"model_link": "https://huggingface.co/Salesforce/moirai-1.1-R-base"
|
|
|
6 |
}
|
|
|
2 |
"model": "Moirai_base",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
+
"model_link": "https://huggingface.co/Salesforce/moirai-1.1-R-base",
|
6 |
+
"code_link": "https://github.com/SalesforceAIResearch/gift-eval/blob/main/notebooks/moirai.ipynb"
|
7 |
}
|
results/Moirai_large/config.json
CHANGED
@@ -2,5 +2,6 @@
|
|
2 |
"model": "Moirai_large",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
-
"model_link": "https://huggingface.co/Salesforce/moirai-1.1-R-large"
|
|
|
6 |
}
|
|
|
2 |
"model": "Moirai_large",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
+
"model_link": "https://huggingface.co/Salesforce/moirai-1.1-R-large",
|
6 |
+
"code_link": "https://github.com/SalesforceAIResearch/gift-eval/blob/main/notebooks/moirai.ipynb"
|
7 |
}
|
results/Moirai_small/config.json
CHANGED
@@ -2,5 +2,6 @@
|
|
2 |
"model": "Moirai_small",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
-
"model_link": "https://huggingface.co/Salesforce/moirai-1.1-R-large"
|
|
|
6 |
}
|
|
|
2 |
"model": "Moirai_small",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
+
"model_link": "https://huggingface.co/Salesforce/moirai-1.1-R-large",
|
6 |
+
"code_link": "https://github.com/SalesforceAIResearch/gift-eval/blob/main/notebooks/moirai.ipynb"
|
7 |
}
|
results/TTM-R2/config.json
CHANGED
@@ -2,5 +2,6 @@
|
|
2 |
"model": "TTM-R2",
|
3 |
"model_type": "fine-tuned",
|
4 |
"model_dtype": "float32",
|
5 |
-
"model_link": "https://huggingface.co/ibm-granite/granite-timeseries-ttm-r2"
|
|
|
6 |
}
|
|
|
2 |
"model": "TTM-R2",
|
3 |
"model_type": "fine-tuned",
|
4 |
"model_dtype": "float32",
|
5 |
+
"model_link": "https://huggingface.co/ibm-granite/granite-timeseries-ttm-r2",
|
6 |
+
"code_link": "https://github.com/SalesforceAIResearch/gift-eval/blob/main/notebooks/ttm.ipynb"
|
7 |
}
|
results/chronos_base/config.json
CHANGED
@@ -2,5 +2,6 @@
|
|
2 |
"model": "Chronos_base",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
-
"model_link": "https://huggingface.co/amazon/chronos-t5-base"
|
|
|
6 |
}
|
|
|
2 |
"model": "Chronos_base",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
+
"model_link": "https://huggingface.co/amazon/chronos-t5-base",
|
6 |
+
"code_link": "https://github.com/SalesforceAIResearch/gift-eval/blob/main/notebooks/chronos.ipynb"
|
7 |
}
|
results/chronos_bolt_base/config.json
CHANGED
@@ -2,5 +2,6 @@
|
|
2 |
"model": "chronos_bolt_base",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
-
"model_link": "https://huggingface.co/amazon/chronos-bolt-base"
|
|
|
6 |
}
|
|
|
2 |
"model": "chronos_bolt_base",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
+
"model_link": "https://huggingface.co/amazon/chronos-bolt-base",
|
6 |
+
"code_link": "https://github.com/SalesforceAIResearch/gift-eval/blob/main/notebooks/chronos.ipynb"
|
7 |
}
|
results/chronos_bolt_small/config.json
CHANGED
@@ -2,5 +2,6 @@
|
|
2 |
"model": "chronos_bolt_small",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
-
"model_link": "https://huggingface.co/amazon/chronos-bolt-small"
|
|
|
6 |
}
|
|
|
2 |
"model": "chronos_bolt_small",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
+
"model_link": "https://huggingface.co/amazon/chronos-bolt-small",
|
6 |
+
"code_link": "https://github.com/SalesforceAIResearch/gift-eval/blob/main/notebooks/chronos.ipynb"
|
7 |
}
|
results/chronos_large/config.json
CHANGED
@@ -2,5 +2,6 @@
|
|
2 |
"model": "Chronos_large",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
-
"model_link": "https://huggingface.co/amazon/chronos-t5-large"
|
|
|
6 |
}
|
|
|
2 |
"model": "Chronos_large",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
+
"model_link": "https://huggingface.co/amazon/chronos-t5-large",
|
6 |
+
"code_link": "https://github.com/SalesforceAIResearch/gift-eval/blob/main/notebooks/chronos.ipynb"
|
7 |
}
|
results/timesfm_2_0_500m/config.json
CHANGED
@@ -2,5 +2,6 @@
|
|
2 |
"model": "timesfm_2_0_500m",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
-
"model_link": "https://huggingface.co/google/timesfm-2.0-500m-jax"
|
|
|
6 |
}
|
|
|
2 |
"model": "timesfm_2_0_500m",
|
3 |
"model_type": "pretrained",
|
4 |
"model_dtype": "float32",
|
5 |
+
"model_link": "https://huggingface.co/google/timesfm-2.0-500m-jax",
|
6 |
+
"code_link": "https://github.com/SalesforceAIResearch/gift-eval/blob/main/notebooks/timesfm.ipynb"
|
7 |
}
|
src/display/formatting.py
CHANGED
@@ -1,9 +1,17 @@
|
|
1 |
-
def model_hyperlink(
|
2 |
-
if
|
3 |
return model_name
|
4 |
# return f'<a target="_blank">{model_name}</a>'
|
5 |
# return f'<a target="_blank" href="{link}" rel="noopener noreferrer">{model_name}</a>'
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
def make_clickable_model(model_name):
|
|
|
1 |
+
def model_hyperlink(model_link, code_link, model_name):
|
2 |
+
if model_link == "":
|
3 |
return model_name
|
4 |
# return f'<a target="_blank">{model_name}</a>'
|
5 |
# return f'<a target="_blank" href="{link}" rel="noopener noreferrer">{model_name}</a>'
|
6 |
+
else:
|
7 |
+
model_url = f'<a target="_blank" href="{model_link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
8 |
+
if code_link == "":
|
9 |
+
return model_url
|
10 |
+
else:
|
11 |
+
code_url = f'<a target="_blank" href="{code_link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">code</a>'
|
12 |
+
return f"{model_url} ({code_url})"
|
13 |
+
# return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a> | ' \
|
14 |
+
# f'<a target="_blank" href="https://www.google.com" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}_link2</a>'
|
15 |
|
16 |
|
17 |
def make_clickable_model(model_name):
|
src/leaderboard/read_evals.py
CHANGED
@@ -19,6 +19,7 @@ class ModelConfig:
|
|
19 |
model: str
|
20 |
model_link: str = ""
|
21 |
model_type: ModelType = ModelType.Unknown
|
|
|
22 |
precision: Precision = Precision.Unknown
|
23 |
license: str = "?"
|
24 |
likes: int = 0
|
@@ -37,13 +38,14 @@ class ModelConfig:
|
|
37 |
model_type = ModelType.from_str(data.get("model_type", ""))
|
38 |
model = data.get("model", "")
|
39 |
model_link = data.get("model_link", "")
|
40 |
-
|
|
|
41 |
|
42 |
def to_dict(self):
|
43 |
"""Converts the model info to a dict compatible with our dataframe display"""
|
44 |
data_dict = {
|
45 |
ModelInfoColumn.model.name: self.model,
|
46 |
-
'model_w_link': model_hyperlink(self.model_link, self.model),
|
47 |
ModelInfoColumn.precision.name: self.precision.value.name,
|
48 |
ModelInfoColumn.model_type.name: self.model_type.value.name,
|
49 |
ModelInfoColumn.model_type_symbol.name: self.model_type.value.symbol,
|
@@ -220,6 +222,7 @@ def get_model_info(results_path: str, requests_path: str) -> list[ModelConfig]:
|
|
220 |
for model_result_filepath in model_result_filepaths:
|
221 |
# Creation of result
|
222 |
model_info = ModelConfig.init_from_json_file(model_result_filepath)
|
|
|
223 |
# eval_result.update_with_request_file(requests_path)
|
224 |
|
225 |
# Store results of same eval together
|
|
|
19 |
model: str
|
20 |
model_link: str = ""
|
21 |
model_type: ModelType = ModelType.Unknown
|
22 |
+
code_link: str = ""
|
23 |
precision: Precision = Precision.Unknown
|
24 |
license: str = "?"
|
25 |
likes: int = 0
|
|
|
38 |
model_type = ModelType.from_str(data.get("model_type", ""))
|
39 |
model = data.get("model", "")
|
40 |
model_link = data.get("model_link", "")
|
41 |
+
code_link = data.get("code_link", "")
|
42 |
+
return cls(model=model, model_link=model_link, model_type=model_type, code_link=code_link, precision=precision)
|
43 |
|
44 |
def to_dict(self):
|
45 |
"""Converts the model info to a dict compatible with our dataframe display"""
|
46 |
data_dict = {
|
47 |
ModelInfoColumn.model.name: self.model,
|
48 |
+
'model_w_link': model_hyperlink(self.model_link, self.code_link, self.model),
|
49 |
ModelInfoColumn.precision.name: self.precision.value.name,
|
50 |
ModelInfoColumn.model_type.name: self.model_type.value.name,
|
51 |
ModelInfoColumn.model_type_symbol.name: self.model_type.value.symbol,
|
|
|
222 |
for model_result_filepath in model_result_filepaths:
|
223 |
# Creation of result
|
224 |
model_info = ModelConfig.init_from_json_file(model_result_filepath)
|
225 |
+
print(model_result_filepath)
|
226 |
# eval_result.update_with_request_file(requests_path)
|
227 |
|
228 |
# Store results of same eval together
|