import json import os import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import EvalQueueColumn from src.leaderboard.read_evals import get_model_info import ipdb def get_model_info_df(results_path: str, requests_path: str, cols: list=[], benchmark_cols: list=[]) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" raw_data = get_model_info(results_path, requests_path) all_data_json = [v.to_dict() for v in raw_data] print(f"The raw data is {all_data_json}") df = pd.DataFrame.from_records(all_data_json) print(f"DF for Model Info ********** {df}") return df def get_merged_df(result_df: pd.DataFrame, model_info_df: pd.DataFrame) -> pd.DataFrame: """Merges the model info dataframe with the results dataframe""" merged_df = pd.merge(model_info_df, result_df, on='model', how='inner') merged_df = merged_df.drop(columns=['model']) merged_df = merged_df.rename(columns={'model_w_link': 'model'}) return merged_df def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" raw_data = get_raw_eval_results(results_path, requests_path) # raw_data = get_raw_eval_results(results_path, requests_path) # print('results_path:', results_path) # all_data_json = [v.to_dict() for v in raw_data] # print(f"The raw data is {all_data_json}") # # df = pd.DataFrame.from_records(all_data_json) df = pd.read_csv(results_path) # df = pd.read_csv('LOTSAv2_EvalBenchmark(Long).csv') # Step 2: Pivot the DataFrame df = df.pivot_table(index='model', columns='dataset', values='eval_metrics/MAE[0.5]', aggfunc='first') df.drop(columns=['ALL'], inplace=True) df['Average'] = df.mean(axis=1) # Reset the index if you want the model column to be part of the DataFrame df.reset_index(inplace=True) print(f"DF at stage 1 ********** {df}") # ipdb.set_trace() df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) # df = df.sort_values(by=[AutoEvalColumn.__dataclass_fields__['average'].name], ascending=False) print(f"DF at stage 2 ********** {df}") df = df[cols].round(decimals=2) print(f"DF at stage 3 ********** {df}") # filter out if any of the benchmarks have not been produced df = df[has_no_nan_values(df, benchmark_cols)] return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]