File size: 5,382 Bytes
62c7044
 
 
 
b27b717
62c7044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b27b717
62c7044
 
 
b27b717
 
 
1cade3b
84ee137
429ce41
 
b27b717
429ce41
b27b717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84ee137
 
 
 
 
 
 
 
ada4cd8
 
 
b27b717
ada4cd8
 
 
 
 
 
 
 
84ee137
ada4cd8
84ee137
ada4cd8
 
 
 
 
b27b717
 
2bc2f6b
 
 
 
5d9a791
 
 
 
4c0cc56
 
2bc2f6b
b27b717
62c7044
 
 
 
 
 
ada4cd8
 
 
2bc2f6b
 
 
84ee137
62c7044
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from dataclasses import dataclass, make_dataclass

import pandas as pd


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False


## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(
    ["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)]
)
auto_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)])
auto_eval_column_dict.append(["use_case_name", ColumnContent, ColumnContent("Use Case Name", "markdown", True)])
auto_eval_column_dict.append(["use_case_type", ColumnContent, ColumnContent("Use Case Type", "markdown", False)])
auto_eval_column_dict.append(["accuracy_method", ColumnContent, ColumnContent("Accuracy Method", "markdown", False)])
# Accuracy metrics
auto_eval_column_dict.append(["accuracy_metric_average", ColumnContent, ColumnContent("Accuracy", "markdown", True)])
auto_eval_column_dict.append(
    [
        "accuracy_metric_instruction_following",
        ColumnContent,
        ColumnContent("Instruction Following", "markdown", True),
    ]
)
auto_eval_column_dict.append(
    ["accuracy_metric_completeness", ColumnContent, ColumnContent("Completeness", "markdown", True)]
)
auto_eval_column_dict.append(
    ["accuracy_metric_conciseness", ColumnContent, ColumnContent("Conciseness", "markdown", True)]
)
auto_eval_column_dict.append(
    ["accuracy_metric_factuality", ColumnContent, ColumnContent("Factuality", "markdown", True)]
)
# auto_eval_column_dict.append(
#     ["use_case_flavor", ColumnContent, ColumnContent("Cost and Speed: Flavor", "markdown", False)]
# )
auto_eval_column_dict.append(["latency", ColumnContent, ColumnContent("Response Time (Sec)", "markdown", True)])
auto_eval_column_dict.append(
    ["mean_output_tokens", ColumnContent, ColumnContent("Mean Output Tokens", "markdown", True)]
)
auto_eval_column_dict.append(["cost_band", ColumnContent, ColumnContent("Cost Band", "markdown", True)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)


# Speed (Latency) & Cost metrics
cost_eval_column_dict = []
# Init
cost_eval_column_dict.append(
    ["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)]
)
cost_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)])
cost_eval_column_dict.append(
    ["use_case_flavor", ColumnContent, ColumnContent("Cost and Speed: Flavor", "markdown", True)]
)
cost_eval_column_dict.append(["latency", ColumnContent, ColumnContent("Response Time (Sec)", "markdown", True)])
cost_eval_column_dict.append(
    ["mean_output_tokens", ColumnContent, ColumnContent("Mean Output Tokens", "markdown", True)]
)
cost_eval_column_dict.append(["cost_band", ColumnContent, ColumnContent("Cost Band", "markdown", True)])
CostEvalColumn = make_dataclass("CostEvalColumn", cost_eval_column_dict, frozen=True)

# Trust & Safety metrics
ts_eval_column_dict = []
# Init
ts_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)])
ts_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)])
ts_eval_column_dict.append(["ts", ColumnContent, ColumnContent("Trust & Safety", "markdown", True)])
ts_eval_column_dict.append(["safety", ColumnContent, ColumnContent("Safety", "markdown", False)])
ts_eval_column_dict.append(["privacy", ColumnContent, ColumnContent("Privacy", "markdown", False)])
ts_eval_column_dict.append(["truthfulness", ColumnContent, ColumnContent("Truthfulness", "markdown", False)])
ts_eval_column_dict.append(["crm_bias", ColumnContent, ColumnContent("CRM Bias", "markdown", False)])
# ts_eval_column_dict.append(["bias_no_ci", ColumnContent, ColumnContent("Bias No CI", "markdown", True)])
TSEvalColumn = make_dataclass("TSEvalColumn", ts_eval_column_dict, frozen=True)

# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]

COST_COLS = [c.name for c in fields(CostEvalColumn) if not c.hidden]
COST_TYPES = [c.type for c in fields(CostEvalColumn) if not c.hidden]

TS_COLS = [c.name for c in fields(TSEvalColumn) if not c.hidden]
TS_TYPES = [c.type for c in fields(TSEvalColumn) if not c.hidden]

# BENCHMARK_COLS = [t.value.col_name for t in Tasks]

NUMERIC_INTERVALS = {
    "?": pd.Interval(-1, 0, closed="right"),
    "~1.5": pd.Interval(0, 2, closed="right"),
    "~3": pd.Interval(2, 4, closed="right"),
    "~7": pd.Interval(4, 9, closed="right"),
    "~13": pd.Interval(9, 20, closed="right"),
    "~35": pd.Interval(20, 45, closed="right"),
    "~60": pd.Interval(45, 70, closed="right"),
    "70+": pd.Interval(70, 10000, closed="right"),
}