Spaces:
Running
Running
add filter: Accuracy Threshold
Browse files
app.py
CHANGED
@@ -34,6 +34,7 @@ def update_table(
|
|
34 |
llm_query: list,
|
35 |
llm_provider_query: list,
|
36 |
accuracy_method_query: str,
|
|
|
37 |
use_case_area_query: list,
|
38 |
use_case_query: list,
|
39 |
use_case_type_query: list,
|
@@ -48,6 +49,7 @@ def update_table(
|
|
48 |
filtered_df = filter_llm_func(hidden_df, llm_query)
|
49 |
filtered_df = filter_llm_provider_func(filtered_df, llm_provider_query)
|
50 |
filtered_df = filter_accuracy_method_func(filtered_df, accuracy_method_query)
|
|
|
51 |
|
52 |
filtered_df["Use Case Area"] = filtered_df["Use Case Name"].apply(lambda x: x.split(": ")[0])
|
53 |
filtered_df = filter_use_case_area_func(filtered_df, use_case_area_query)
|
@@ -63,16 +65,22 @@ def init_leaderboard_df(
|
|
63 |
llm_query: list,
|
64 |
llm_provider_query: list,
|
65 |
accuracy_method_query: str,
|
|
|
66 |
use_case_area_query: list,
|
67 |
use_case_query: list,
|
68 |
use_case_type_query: list,
|
69 |
):
|
|
|
|
|
|
|
|
|
70 |
return update_table(
|
71 |
leaderboard_df,
|
72 |
columns,
|
73 |
llm_query,
|
74 |
llm_provider_query,
|
75 |
accuracy_method_query,
|
|
|
76 |
use_case_area_query,
|
77 |
use_case_query,
|
78 |
use_case_type_query,
|
@@ -83,6 +91,11 @@ def filter_accuracy_method_func(df: pd.DataFrame, accuracy_method_query: str) ->
|
|
83 |
return df[df["Accuracy Method"] == accuracy_method_query]
|
84 |
|
85 |
|
|
|
|
|
|
|
|
|
|
|
86 |
def filter_use_case_area_func(df: pd.DataFrame, use_case_area_query: list) -> pd.DataFrame:
|
87 |
return df[
|
88 |
df["Use Case Area"].apply(
|
@@ -108,10 +121,6 @@ def filter_llm_provider_func(df: pd.DataFrame, llm_provider_query: list) -> pd.D
|
|
108 |
return df[df["LLM Provider"].isin(llm_provider_query)]
|
109 |
|
110 |
|
111 |
-
# def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
112 |
-
# return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
113 |
-
|
114 |
-
|
115 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
116 |
always_here_cols = [
|
117 |
AutoEvalColumn.model.name,
|
@@ -298,6 +307,7 @@ with demo:
|
|
298 |
filter_llm.value,
|
299 |
filter_llm_provider.value,
|
300 |
filter_accuracy_method.value,
|
|
|
301 |
filter_use_case_area.value,
|
302 |
filter_use_case.value,
|
303 |
filter_use_case_type.value,
|
@@ -334,6 +344,7 @@ with demo:
|
|
334 |
filter_llm,
|
335 |
filter_llm_provider,
|
336 |
filter_accuracy_method,
|
|
|
337 |
filter_use_case_area,
|
338 |
filter_use_case,
|
339 |
filter_use_case_type,
|
@@ -350,6 +361,7 @@ with demo:
|
|
350 |
filter_llm,
|
351 |
filter_llm_provider,
|
352 |
filter_accuracy_method,
|
|
|
353 |
filter_use_case_area,
|
354 |
filter_use_case,
|
355 |
filter_use_case_type,
|
|
|
34 |
llm_query: list,
|
35 |
llm_provider_query: list,
|
36 |
accuracy_method_query: str,
|
37 |
+
accuracy_threshold_query: str,
|
38 |
use_case_area_query: list,
|
39 |
use_case_query: list,
|
40 |
use_case_type_query: list,
|
|
|
49 |
filtered_df = filter_llm_func(hidden_df, llm_query)
|
50 |
filtered_df = filter_llm_provider_func(filtered_df, llm_provider_query)
|
51 |
filtered_df = filter_accuracy_method_func(filtered_df, accuracy_method_query)
|
52 |
+
filtered_df = filter_accuracy_threshold_func(filtered_df, accuracy_threshold_query)
|
53 |
|
54 |
filtered_df["Use Case Area"] = filtered_df["Use Case Name"].apply(lambda x: x.split(": ")[0])
|
55 |
filtered_df = filter_use_case_area_func(filtered_df, use_case_area_query)
|
|
|
65 |
llm_query: list,
|
66 |
llm_provider_query: list,
|
67 |
accuracy_method_query: str,
|
68 |
+
accuracy_threshold_query: str,
|
69 |
use_case_area_query: list,
|
70 |
use_case_query: list,
|
71 |
use_case_type_query: list,
|
72 |
):
|
73 |
+
|
74 |
+
# Applying the style function
|
75 |
+
# df = leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value]
|
76 |
+
# return df.style.apply(highlight_cols, axis=None)
|
77 |
return update_table(
|
78 |
leaderboard_df,
|
79 |
columns,
|
80 |
llm_query,
|
81 |
llm_provider_query,
|
82 |
accuracy_method_query,
|
83 |
+
accuracy_threshold_query,
|
84 |
use_case_area_query,
|
85 |
use_case_query,
|
86 |
use_case_type_query,
|
|
|
91 |
return df[df["Accuracy Method"] == accuracy_method_query]
|
92 |
|
93 |
|
94 |
+
def filter_accuracy_threshold_func(df: pd.DataFrame, accuracy_threshold_query: str) -> pd.DataFrame:
|
95 |
+
accuracy_cols = ["Instruction Following", "Conciseness", "Completeness", "Accuracy"]
|
96 |
+
return df[(df.loc[:, accuracy_cols] >= float(accuracy_threshold_query)).all(axis=1)]
|
97 |
+
|
98 |
+
|
99 |
def filter_use_case_area_func(df: pd.DataFrame, use_case_area_query: list) -> pd.DataFrame:
|
100 |
return df[
|
101 |
df["Use Case Area"].apply(
|
|
|
121 |
return df[df["LLM Provider"].isin(llm_provider_query)]
|
122 |
|
123 |
|
|
|
|
|
|
|
|
|
124 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
125 |
always_here_cols = [
|
126 |
AutoEvalColumn.model.name,
|
|
|
307 |
filter_llm.value,
|
308 |
filter_llm_provider.value,
|
309 |
filter_accuracy_method.value,
|
310 |
+
filter_accuracy_threshold.value,
|
311 |
filter_use_case_area.value,
|
312 |
filter_use_case.value,
|
313 |
filter_use_case_type.value,
|
|
|
344 |
filter_llm,
|
345 |
filter_llm_provider,
|
346 |
filter_accuracy_method,
|
347 |
+
filter_accuracy_threshold,
|
348 |
filter_use_case_area,
|
349 |
filter_use_case,
|
350 |
filter_use_case_type,
|
|
|
361 |
filter_llm,
|
362 |
filter_llm_provider,
|
363 |
filter_accuracy_method,
|
364 |
+
filter_accuracy_threshold,
|
365 |
filter_use_case_area,
|
366 |
filter_use_case,
|
367 |
filter_use_case_type,
|