import os import pandas as pd # from src.display.formatting import has_no_nan_values, make_clickable_model # from src.display.utils import AutoEvalColumn, EvalQueueColumn # from src.leaderboard.read_evals import get_raw_eval_results def get_leaderboard_df_crm( crm_results_path: str, accuracy_cols: list, cost_cols: list ) -> tuple[pd.DataFrame, pd.DataFrame]: """Creates a dataframe from all the individual experiment results""" sf_finetuned_models = ["SF-TextBase 70B", "SF-TextBase 7B", "SF-TextSum"] leaderboard_accuracy_df = pd.read_csv(os.path.join(crm_results_path, "hf_leaderboard_accuracy.csv")) leaderboard_accuracy_df = leaderboard_accuracy_df[~leaderboard_accuracy_df["Model Name"].isin(sf_finetuned_models)] # leaderboard_accuracy_df = leaderboard_accuracy_df.sort_values( # by=[AutoEvalColumn.accuracy_metric_average.name], ascending=False # ) # print(leaderboard_accuracy_df) # print(leaderboard_accuracy_df.columns) # print(leaderboard_accuracy_df["Model Name"].nunique()) leaderboard_accuracy_df = leaderboard_accuracy_df[accuracy_cols].round(decimals=2) ref_df = leaderboard_accuracy_df[["Model Name", "LLM Provider"]].drop_duplicates() leaderboard_cost_df = pd.read_csv(os.path.join(crm_results_path, "hf_leaderboard_latency_cost.csv")) leaderboard_cost_df = leaderboard_cost_df[~leaderboard_cost_df["Model Name"].isin(sf_finetuned_models)] leaderboard_cost_df = leaderboard_cost_df.join(ref_df.set_index("Model Name"), on="Model Name") leaderboard_cost_df["LLM Provider"] = leaderboard_cost_df["LLM Provider"].fillna("Google") leaderboard_cost_df = leaderboard_cost_df[cost_cols].round(decimals=2) leaderboard_ts_df = pd.read_csv(os.path.join(crm_results_path, "hf_leaderboard_ts.csv")) leaderboard_ts_df = leaderboard_ts_df[~leaderboard_ts_df["Model Name"].isin(sf_finetuned_models)] leaderboard_ts_df = leaderboard_ts_df.join(ref_df.set_index("Model Name"), on="Model Name") return leaderboard_accuracy_df, leaderboard_cost_df, leaderboard_ts_df # def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: # """Creates a dataframe from all the individual experiment results""" # raw_data = get_raw_eval_results(results_path, requests_path) # all_data_json = [v.to_dict() for v in raw_data] # df = pd.DataFrame.from_records(all_data_json) # df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) # df = df[cols].round(decimals=2) # # filter out if any of the benchmarks have not been produced # df = df[has_no_nan_values(df, benchmark_cols)] # return raw_data, df # def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: # """Creates the different dataframes for the evaluation queues requestes""" # entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] # all_evals = [] # for entry in entries: # if ".json" in entry: # file_path = os.path.join(save_path, entry) # with open(file_path) as fp: # data = json.load(fp) # data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) # data[EvalQueueColumn.revision.name] = data.get("revision", "main") # all_evals.append(data) # elif ".md" not in entry: # # this is a folder # sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] # for sub_entry in sub_entries: # file_path = os.path.join(save_path, entry, sub_entry) # with open(file_path) as fp: # data = json.load(fp) # data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) # data[EvalQueueColumn.revision.name] = data.get("revision", "main") # all_evals.append(data) # pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] # running_list = [e for e in all_evals if e["status"] == "RUNNING"] # finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] # df_pending = pd.DataFrame.from_records(pending_list, columns=cols) # df_running = pd.DataFrame.from_records(running_list, columns=cols) # df_finished = pd.DataFrame.from_records(finished_list, columns=cols) # return df_finished[cols], df_running[cols], df_pending[cols]