Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain_core.messages import AIMessage, HumanMessage | |
from langchain_community.document_loaders import WebBaseLoader | |
from langchain_openai import ChatOpenAI | |
from langchain_chroma import Chroma | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings | |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain.chains.history_aware_retriever import create_history_aware_retriever | |
from langchain.chains.retrieval import create_retrieval_chain | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from dotenv import load_dotenv | |
import os | |
load_dotenv() | |
llm = ChatOpenAI(temperature=0.5, model="mistralai/mistral-7b-instruct:free",base_url="https://openrouter.ai/api/v1",api_key=os.getenv("OPENAI_API_KEY")) | |
def get_vector_store(url): | |
loader = WebBaseLoader(url) | |
documents = loader.load() | |
# splitting into chunks | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
documents_chunks = text_splitter.split_documents(documents=documents) | |
# converting the chunks into embeddings | |
embeddings = HuggingFaceEndpointEmbeddings(huggingfacehub_api_token=os.getenv("HF_TOKEN")) | |
# store the embeddings in a database | |
vector_store = Chroma.from_documents(documents_chunks, embeddings) | |
return vector_store | |
def get_context_retiriever(vector_store): | |
retriever = vector_store.as_retriever() | |
prompt = ChatPromptTemplate.from_messages([ | |
MessagesPlaceholder(variable_name="chat_history"), | |
("user", "{input}"), | |
("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation") | |
]) | |
retriever_chain = create_history_aware_retriever(llm=llm, retriever=retriever, prompt=prompt) | |
return retriever_chain | |
def get_conversational_chain(retriever_chain): | |
prompt = ChatPromptTemplate.from_messages([ | |
("system", "Answer the user's questions based on the below context:\n\n{context}"), | |
MessagesPlaceholder(variable_name="chat_history"), | |
("user", "{input}"), | |
]) | |
stuff_documnets_chain = create_stuff_documents_chain(llm, prompt) | |
return create_retrieval_chain(retriever_chain, stuff_documnets_chain) | |
def get_response(user_input): | |
retriever_chain = get_context_retiriever(st.session_state.vector_store) | |
conversational_chain = get_conversational_chain(retriever_chain) | |
response = conversational_chain.invoke({ | |
"chat_history": st.session_state.chat_history, | |
"input": user_input | |
}) | |
return response['answer'] | |
st.set_page_config(page_title="Chat with websites", page_icon="π€") | |
st.title("Chat with websites") | |
st.caption("Follow me on Github: [samagra44](https://github.com/samagra44)") | |
with st.sidebar: | |
st.header("Settings") | |
website_url = st.text_input("Website URL") | |
if website_url is None or website_url == "": | |
st.info("Please enter a website URL") | |
else: | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [ | |
AIMessage(content="Hello, I am a bot. How can I help you?"), | |
] | |
if "vector_store" not in st.session_state: | |
st.session_state.vector_store = get_vector_store(website_url) | |
user_query = st.chat_input("Type your message here...") | |
if user_query is not None and user_query != "": | |
response = get_response(user_query) | |
st.session_state.chat_history.append(HumanMessage(content=user_query)) | |
st.session_state.chat_history.append(AIMessage(content=response)) | |
for message in st.session_state.chat_history: | |
if isinstance(message, AIMessage): | |
with st.chat_message("AI"): | |
st.write(message.content) | |
elif isinstance(message, HumanMessage): | |
with st.chat_message("Human"): | |
st.write(message.content) |