kushagra124's picture
adding app with CLIP image segmentation
e018390
raw
history blame
2.98 kB
from turtle import title
import gradio as gr
from transformers import pipeline
import numpy as np
from PIL import Image
import torch
import cv2
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation,AutoProcessor,AutoConfig
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
classes = list()
def create_rgb_mask(mask):
color = tuple(np.random.choice(range(0,256), size=3))
gray_3_channel = cv2.merge((mask, mask, mask))
gray_3_channel[mask==255] = color
return gray_3_channel.astype(np.uint8)
def detect_using_clip(image,prompts=[],threshould=0.4):
predicted_masks = list()
inputs = processor(
text=prompts,
images=[image] * len(prompts),
padding="max_length",
return_tensors="pt",
)
with torch.no_grad(): # Use 'torch.no_grad()' to disable gradient computation
outputs = model(**inputs)
preds = outputs.logits.unsqueeze(1)
for i,prompt in enumerate(prompts):
predicted_image = torch.sigmoid(preds[i][0]).detach().cpu().numpy()
predicted_image = np.where(predicted_image>threshould,255,0)
predicted_masks.append(create_rgb_mask(predicted_image))
return predicted_masks
def visualize_images(image,predicted_images):
alpha = 0.7
image_resize = cv2.resize(image,(352,352))
resize_image_copy = image_resize.copy()
for mask_image in predicted_images:
resize_image_copy = cv2.addWeighted(resize_image_copy,alpha,mask_image,1-alpha,10)
return cv2.convertScaleAbs(resize_image_copy, alpha=1.8, beta=15)
def shot(image, labels_text):
if "," in labels_text:
prompts = labels_text.split(',')
else:
prompts = [labels_text]
prompts = list(map(lambda x: x.strip(),prompts))
predicted_images = detect_using_clip(image,prompts=prompts)
category_image = visualize_images(image=image,predicted_images=predicted_images)
return category_image
iface = gr.Interface(fn=shot,
inputs = ["image","text"],
outputs = "image",
description ="Add an Image and lists of category to be detected separated by commas(atleast 2 )",
title = "Zero-shot Image Segmentation with Prompt ",
examples=[
["images/room.jpg","bed, table, plant, light, window,light"],
["images/image2.png","banner, building,door, sign,"],
["images/seats.jpg","door,table,chairs"],
["images/vegetables.jpg","carrot,radish,beans,potato,brnjal,basket"],
["images/room2.jpg","door,platns,dog,coffe table,mug,pillow,table lamp,carpet,pictures,door,clock"]
],
# allow_flagging=False,
# analytics_enabled=False,
)
iface.launch()