Spaces:
Running
Running
kushagra124
commited on
Commit
·
7c8f933
1
Parent(s):
7fb0d5c
adding app with CLIP image segmentation
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
from turtle import title
|
2 |
-
import os
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline
|
5 |
import numpy as np
|
@@ -7,7 +6,6 @@ from PIL import Image
|
|
7 |
import torch
|
8 |
import cv2
|
9 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation,AutoProcessor,AutoConfig
|
10 |
-
from skimage.measure import label, regionprops
|
11 |
|
12 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
13 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
@@ -21,7 +19,6 @@ def create_rgb_mask(mask):
|
|
21 |
|
22 |
|
23 |
def detect_using_clip(image,prompts=[],threshould=0.4):
|
24 |
-
h,w = image.shape[:2]
|
25 |
predicted_masks = list()
|
26 |
inputs = processor(
|
27 |
text=prompts,
|
@@ -36,14 +33,13 @@ def detect_using_clip(image,prompts=[],threshould=0.4):
|
|
36 |
for i,prompt in enumerate(prompts):
|
37 |
predicted_image = torch.sigmoid(preds[i][0]).detach().cpu().numpy()
|
38 |
predicted_image = np.where(predicted_image>threshould,255,0)
|
39 |
-
|
40 |
predicted_masks.append(create_rgb_mask(predicted_image))
|
|
|
41 |
return predicted_masks
|
42 |
|
43 |
def visualize_images(image,predicted_images):
|
44 |
alpha = 0.7
|
45 |
# H,W = image.shape[:2]
|
46 |
-
prompt = prompt.lower()
|
47 |
image_resize = cv2.resize(image,(352,352))
|
48 |
resize_image_copy = image_resize.copy()
|
49 |
|
@@ -59,7 +55,6 @@ def shot(image, labels_text):
|
|
59 |
else:
|
60 |
prompts = [labels_text]
|
61 |
prompts = list(map(lambda x: x.strip(),prompts))
|
62 |
-
|
63 |
predicted_images = detect_using_clip(image,prompts=prompts)
|
64 |
|
65 |
category_image = visualize_images(image=image,predicted_images=predicted_images)
|
|
|
1 |
from turtle import title
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
import numpy as np
|
|
|
6 |
import torch
|
7 |
import cv2
|
8 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation,AutoProcessor,AutoConfig
|
|
|
9 |
|
10 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
11 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
|
|
19 |
|
20 |
|
21 |
def detect_using_clip(image,prompts=[],threshould=0.4):
|
|
|
22 |
predicted_masks = list()
|
23 |
inputs = processor(
|
24 |
text=prompts,
|
|
|
33 |
for i,prompt in enumerate(prompts):
|
34 |
predicted_image = torch.sigmoid(preds[i][0]).detach().cpu().numpy()
|
35 |
predicted_image = np.where(predicted_image>threshould,255,0)
|
|
|
36 |
predicted_masks.append(create_rgb_mask(predicted_image))
|
37 |
+
|
38 |
return predicted_masks
|
39 |
|
40 |
def visualize_images(image,predicted_images):
|
41 |
alpha = 0.7
|
42 |
# H,W = image.shape[:2]
|
|
|
43 |
image_resize = cv2.resize(image,(352,352))
|
44 |
resize_image_copy = image_resize.copy()
|
45 |
|
|
|
55 |
else:
|
56 |
prompts = [labels_text]
|
57 |
prompts = list(map(lambda x: x.strip(),prompts))
|
|
|
58 |
predicted_images = detect_using_clip(image,prompts=prompts)
|
59 |
|
60 |
category_image = visualize_images(image=image,predicted_images=predicted_images)
|