Sambhavnoobcoder commited on
Commit
40fabff
·
verified ·
1 Parent(s): bf6f4ce

create app.py

Browse files

a basic gradio interface transferred to the huggingface platform

Files changed (1) hide show
  1. app.py +184 -0
app.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import google.generativeai as genai
2
+ import requests
3
+ import numpy as np
4
+ import faiss
5
+ from sentence_transformers import SentenceTransformer
6
+ from bs4 import BeautifulSoup
7
+ import gradio as gr
8
+
9
+ # Configure Gemini API key
10
+ gemini_api_secret_name = 'AIzaSyA0yLvySmj8xjMd0sedSgklg1fj0wBDyyw'
11
+
12
+ from google.colab import userdata
13
+
14
+ try:
15
+ GOOGLE_API_KEY = userdata.get(gemini_api_secret_name)
16
+ genai.configure(api_key=GOOGLE_API_KEY)
17
+ except userdata.SecretNotFoundError as e:
18
+ print(f'Secret not found\n\nThis expects you to create a secret named {gemini_api_secret_name} in Colab\n\nVisit https://makersuite.google.com/app/apikey to create an API key\n\nStore that in the secrets section on the left side of the notebook (key icon)\n\nName the secret {gemini_api_secret_name}')
19
+ raise e
20
+ except userdata.NotebookAccessError as e:
21
+ print(f'You need to grant this notebook access to the {gemini_api_secret_name} secret in order for the notebook to access Gemini on your behalf.')
22
+ raise e
23
+ except Exception as e:
24
+ # unknown error
25
+ print(f"There was an unknown error. Ensure you have a secret {gemini_api_secret_name} stored in Colab and it's a valid key from https://makersuite.google.com/app/apikey")
26
+ raise e
27
+
28
+ # Fetch lecture notes and model architectures
29
+ def fetch_lecture_notes():
30
+ lecture_urls = [
31
+ "https://stanford-cs324.github.io/winter2022/lectures/introduction/",
32
+ "https://stanford-cs324.github.io/winter2022/lectures/capabilities/",
33
+ "https://stanford-cs324.github.io/winter2022/lectures/data/",
34
+ "https://stanford-cs324.github.io/winter2022/lectures/modeling/"
35
+ ]
36
+ lecture_texts = []
37
+ for url in lecture_urls:
38
+ response = requests.get(url)
39
+ if response.status_code == 200:
40
+ print(f"Fetched content from {url}")
41
+ lecture_texts.append((extract_text_from_html(response.text), url))
42
+ else:
43
+ print(f"Failed to fetch content from {url}, status code: {response.status_code}")
44
+ return lecture_texts
45
+
46
+ def fetch_model_architectures():
47
+ url = "https://github.com/Hannibal046/Awesome-LLM#milestone-papers"
48
+ response = requests.get(url)
49
+ if response.status_code == 200:
50
+ print(f"Fetched model architectures, status code: {response.status_code}")
51
+ return extract_text_from_html(response.text), url
52
+ else:
53
+ print(f"Failed to fetch model architectures, status code: {response.status_code}")
54
+ return "", url
55
+
56
+ # Extract text from HTML content
57
+ def extract_text_from_html(html_content):
58
+ soup = BeautifulSoup(html_content, 'html.parser')
59
+ for script in soup(["script", "style"]):
60
+ script.extract()
61
+ text = soup.get_text(separator="\n", strip=True)
62
+ return text
63
+
64
+ # Generate embeddings using SentenceTransformers
65
+ def create_embeddings(texts, model):
66
+ texts_only = [text for text, _ in texts]
67
+ embeddings = model.encode(texts_only)
68
+ return embeddings
69
+
70
+ # Initialize FAISS index
71
+ def initialize_faiss_index(embeddings):
72
+ dimension = embeddings.shape[1] # Assuming all embeddings have the same dimension
73
+ index = faiss.IndexFlatL2(dimension)
74
+ index.add(embeddings.astype('float32'))
75
+ return index
76
+
77
+ # Handle natural language queries
78
+ conversation_history = []
79
+
80
+ def handle_query(query, faiss_index, embeddings_texts, model):
81
+ global conversation_history
82
+
83
+ query_embedding = model.encode([query]).astype('float32')
84
+
85
+ # Search FAISS index
86
+ _, indices = faiss_index.search(query_embedding, 3) # Retrieve top 3 results
87
+ relevant_texts = [embeddings_texts[idx] for idx in indices[0]]
88
+
89
+ # Combine relevant texts and truncate if necessary
90
+ combined_text = "\n".join([text for text, _ in relevant_texts])
91
+ max_length = 500 # Adjust as necessary
92
+ if len(combined_text) > max_length:
93
+ combined_text = combined_text[:max_length] + "..."
94
+
95
+ # Generate a response using Gemini
96
+ try:
97
+ response = genai.generate_text(
98
+ model="models/text-bison-001",
99
+ prompt=f"Based on the following context:\n\n{combined_text}\n\nAnswer the following question: {query}",
100
+ max_output_tokens=200
101
+ )
102
+ generated_text = response.result
103
+ except Exception as e:
104
+ print(f"Error generating text: {e}")
105
+ generated_text = "An error occurred while generating the response."
106
+
107
+ # Update conversation history
108
+ conversation_history.append(f"User: {query}")
109
+ conversation_history.append(f"System: {generated_text}")
110
+
111
+ # Extract sources
112
+ sources = [url for _, url in relevant_texts]
113
+
114
+ return generated_text, sources
115
+
116
+ def generate_concise_response(prompt, context):
117
+ try:
118
+ response = genai.generate_text(
119
+ model="models/text-bison-001",
120
+ prompt=f"{prompt}\n\nContext: {context}\n\nAnswer:",
121
+ max_output_tokens=200
122
+ )
123
+ return response.result
124
+ except Exception as e:
125
+ print(f"Error generating concise response: {e}")
126
+ return "An error occurred while generating the concise response."
127
+
128
+ # Main function to execute the pipeline
129
+ def chatbot(message , history):
130
+ lecture_notes = fetch_lecture_notes()
131
+ model_architectures = fetch_model_architectures()
132
+
133
+ all_texts = lecture_notes + [model_architectures]
134
+
135
+ # Load the SentenceTransformers model
136
+ embedding_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
137
+
138
+ embeddings = create_embeddings(all_texts, embedding_model)
139
+
140
+ # Initialize FAISS index
141
+ faiss_index = initialize_faiss_index(np.array(embeddings))
142
+
143
+
144
+ response, sources = handle_query(message, faiss_index, all_texts, embedding_model)
145
+ print("Query:", message)
146
+ print("Response:", response)
147
+ total_text = response
148
+ if sources:
149
+ print("Sources:", sources)
150
+ relevant_source = ""
151
+ for source in sources:
152
+ relevant_source += source +"\n"
153
+ total_text += "\n\nSources:\n" + relevant_source
154
+
155
+ else:
156
+ print("Sources: None of the provided sources were used.")
157
+ print("----")
158
+
159
+ # Generate a concise and relevant summary using Gemini
160
+ prompt = "Summarize the user queries so far"
161
+ user_queries_summary = " ".join(message)
162
+ concise_response = generate_concise_response(prompt, user_queries_summary)
163
+ print("Concise Response:")
164
+ print(concise_response)
165
+ return total_text
166
+
167
+ iface = gr.ChatInterface(
168
+ chatbot,
169
+ title="LLM Research Assistant",
170
+ description="Ask questions about LLM architectures, datasets, and training techniques.",
171
+ examples=[
172
+ "What are some milestone model architectures in LLMs?",
173
+ "Explain the transformer architecture.",
174
+ "Tell me about datasets used to train LLMs.",
175
+ "How are LLM training datasets cleaned and preprocessed?",
176
+ "Summarize the user queries so far"
177
+ ],
178
+ retry_btn="Regenerate",
179
+ undo_btn="Undo",
180
+ clear_btn="Clear",
181
+ )
182
+
183
+ if __name__ == "__main__":
184
+ iface.launch(debug=True)