Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,41 +2,48 @@ import gradio as gr
|
|
2 |
import cv2
|
3 |
import requests
|
4 |
import os
|
5 |
-
|
|
|
6 |
from ultralytics import YOLO
|
7 |
-
|
8 |
file_urls = [
|
9 |
'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1',
|
10 |
'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1',
|
11 |
'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
|
12 |
]
|
13 |
-
|
14 |
def download_file(url, save_name):
|
15 |
-
url = url
|
16 |
if not os.path.exists(save_name):
|
17 |
file = requests.get(url)
|
18 |
open(save_name, 'wb').write(file.content)
|
19 |
-
|
20 |
for i, url in enumerate(file_urls):
|
21 |
if 'mp4' in file_urls[i]:
|
22 |
-
download_file(
|
23 |
-
file_urls[i],
|
24 |
-
f"video.mp4"
|
25 |
-
)
|
26 |
else:
|
27 |
-
download_file(
|
28 |
-
file_urls[i],
|
29 |
-
f"image_{i}.jpg"
|
30 |
-
)
|
31 |
|
32 |
model = YOLO('best.pt')
|
33 |
-
path
|
34 |
video_path = [['video.mp4']]
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def show_preds_image(image_path):
|
37 |
image = cv2.imread(image_path)
|
38 |
outputs = model.predict(source=image_path)
|
39 |
results = outputs[0].cpu().numpy()
|
|
|
|
|
|
|
40 |
for i, det in enumerate(results.boxes.xyxy):
|
41 |
cv2.rectangle(
|
42 |
image,
|
@@ -46,14 +53,16 @@ def show_preds_image(image_path):
|
|
46 |
thickness=2,
|
47 |
lineType=cv2.LINE_AA
|
48 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
50 |
-
|
51 |
-
inputs_image = [
|
52 |
-
|
53 |
-
]
|
54 |
-
outputs_image = [
|
55 |
-
gr.components.Image(type="numpy", label="Output Image"),
|
56 |
-
]
|
57 |
interface_image = gr.Interface(
|
58 |
fn=show_preds_image,
|
59 |
inputs=inputs_image,
|
|
|
2 |
import cv2
|
3 |
import requests
|
4 |
import os
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
from ultralytics import YOLO
|
8 |
+
|
9 |
file_urls = [
|
10 |
'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1',
|
11 |
'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1',
|
12 |
'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
|
13 |
]
|
14 |
+
|
15 |
def download_file(url, save_name):
|
|
|
16 |
if not os.path.exists(save_name):
|
17 |
file = requests.get(url)
|
18 |
open(save_name, 'wb').write(file.content)
|
19 |
+
|
20 |
for i, url in enumerate(file_urls):
|
21 |
if 'mp4' in file_urls[i]:
|
22 |
+
download_file(file_urls[i], f"video.mp4")
|
|
|
|
|
|
|
23 |
else:
|
24 |
+
download_file(file_urls[i], f"image_{i}.jpg")
|
|
|
|
|
|
|
25 |
|
26 |
model = YOLO('best.pt')
|
27 |
+
path = [['image_0.jpg'], ['image_1.jpg']]
|
28 |
video_path = [['video.mp4']]
|
29 |
|
30 |
+
def save_annotation(image_path, results):
|
31 |
+
height, width, _ = cv2.imread(image_path).shape
|
32 |
+
annotation_txt = ""
|
33 |
+
for i, det in enumerate(results.boxes.xyxy):
|
34 |
+
# YOLO format: class x_center y_center width height
|
35 |
+
class_id = int(results.names[int(det[5])])
|
36 |
+
x_center, y_center, bbox_width, bbox_height = det[0], det[1], det[2] - det[0], det[3] - det[1]
|
37 |
+
annotation_txt += f"{class_id} {x_center / width:.6f} {y_center / height:.6f} {bbox_width / width:.6f} {bbox_height / height:.6f}\n"
|
38 |
+
return annotation_txt
|
39 |
+
|
40 |
def show_preds_image(image_path):
|
41 |
image = cv2.imread(image_path)
|
42 |
outputs = model.predict(source=image_path)
|
43 |
results = outputs[0].cpu().numpy()
|
44 |
+
|
45 |
+
annotation_txt = save_annotation(image_path, results)
|
46 |
+
|
47 |
for i, det in enumerate(results.boxes.xyxy):
|
48 |
cv2.rectangle(
|
49 |
image,
|
|
|
53 |
thickness=2,
|
54 |
lineType=cv2.LINE_AA
|
55 |
)
|
56 |
+
|
57 |
+
# Save YOLO format annotation to a txt file
|
58 |
+
annotation_filename = f"annotation_{os.path.basename(image_path).split('.')[0]}.txt"
|
59 |
+
with open(annotation_filename, 'w') as f:
|
60 |
+
f.write(annotation_txt)
|
61 |
+
|
62 |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
63 |
+
|
64 |
+
inputs_image = [gr.components.Image(type="filepath", label="Input Image"),]
|
65 |
+
outputs_image = [gr.components.Image(type="numpy", label="Output Image"),]
|
|
|
|
|
|
|
|
|
66 |
interface_image = gr.Interface(
|
67 |
fn=show_preds_image,
|
68 |
inputs=inputs_image,
|