Commit
·
936e46b
1
Parent(s):
3968ee0
Upload app.py
Browse filesadded main app.py for execution
app.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from surprise import Reader, Dataset, SVD
|
7 |
+
from surprise.model_selection import cross_validate
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def load_model():
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
device = "cuda"
|
16 |
+
else:
|
17 |
+
device = "cpu"
|
18 |
+
|
19 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2").to(device)
|
20 |
+
return model
|
21 |
+
|
22 |
+
|
23 |
+
def encode_and_calculate_similarity(model):
|
24 |
+
sentence_embeddings = model.encode(df_merged["soup"].tolist())
|
25 |
+
|
26 |
+
cos_sim = cosine_similarity(sentence_embeddings)
|
27 |
+
|
28 |
+
return cos_sim
|
29 |
+
|
30 |
+
|
31 |
+
def svd():
|
32 |
+
reader = Reader()
|
33 |
+
data = Dataset.load_from_df(df_ratings[["userId", "movieId", "rating"]], reader)
|
34 |
+
svd = SVD()
|
35 |
+
cross_validate(svd, data, measures=["RMSE", "MAE"], cv=5, verbose=True)
|
36 |
+
|
37 |
+
trainset = data.build_full_trainset()
|
38 |
+
svd.fit(trainset)
|
39 |
+
return svd
|
40 |
+
|
41 |
+
|
42 |
+
def get_sorted_movie_indices(title: str, cos_sim: np.ndarray) -> list[int]:
|
43 |
+
"""
|
44 |
+
Retrieve the sorted indices of movies based on their similarity scores to a given movie.
|
45 |
+
|
46 |
+
:param title: The title of the movie to find similar movies for.
|
47 |
+
:param cos_sim: The cosine similarity matrix of movies.
|
48 |
+
:return: A list of sorted movie indices.
|
49 |
+
"""
|
50 |
+
try:
|
51 |
+
# Get the index of the movie that matches the title
|
52 |
+
movie_index = movie_indices[title.lower()]
|
53 |
+
|
54 |
+
# If there are multiple movies with the same title, pick the first one.
|
55 |
+
if isinstance(movie_index, pd.Series):
|
56 |
+
movie_index = movie_index[0]
|
57 |
+
|
58 |
+
except KeyError:
|
59 |
+
print(f"Movie '{title}' not found. Please enter a valid movie title.")
|
60 |
+
return None
|
61 |
+
|
62 |
+
# Get the pairwise similarity scores of all movies with that movie
|
63 |
+
sim_scores = list(enumerate(cos_sim[movie_index]))
|
64 |
+
|
65 |
+
# Sort the movies based on the similarity scores
|
66 |
+
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)[1:]
|
67 |
+
|
68 |
+
# Get the movie indices
|
69 |
+
sorted_movie_indices = [sim_score[0] for sim_score in sim_scores]
|
70 |
+
|
71 |
+
return sorted_movie_indices
|
72 |
+
|
73 |
+
|
74 |
+
def get_qualified_movies(
|
75 |
+
df: pd.DataFrame, df_qualified: pd.DataFrame, sorted_movie_indices: list[int]
|
76 |
+
) -> pd.DataFrame:
|
77 |
+
"""
|
78 |
+
Filter out movies that are not in the qualified movies chart based on IMDB's weighted rating.
|
79 |
+
|
80 |
+
:param df: The DataFrame containing movie details.
|
81 |
+
:param df_qualified: The DataFrame containing qualified movie details.
|
82 |
+
:param sorted_movie_indices: A list of movie indices sorted by similarity scores.
|
83 |
+
:return: A Pandas DataFrame containing the qualified movies sorted by similarity scores.
|
84 |
+
"""
|
85 |
+
movie_details = [
|
86 |
+
"id",
|
87 |
+
"title",
|
88 |
+
"genres",
|
89 |
+
"original_language",
|
90 |
+
"production_countries",
|
91 |
+
"release_date",
|
92 |
+
"runtime",
|
93 |
+
]
|
94 |
+
|
95 |
+
sorted_movies = df.loc[sorted_movie_indices, movie_details]
|
96 |
+
qualified_movies = sorted_movies[sorted_movies["id"].isin(df_qualified["id"])]
|
97 |
+
return qualified_movies
|
98 |
+
|
99 |
+
|
100 |
+
def predict_user_rating(
|
101 |
+
userId: int, qualified_movies: pd.DataFrame, indices_map: pd.DataFrame
|
102 |
+
) -> pd.DataFrame:
|
103 |
+
"""
|
104 |
+
Predict the user rating for qualified movies using SVD and return the sorted DataFrame.
|
105 |
+
|
106 |
+
:param userId: The ID of the user.
|
107 |
+
:param qualified_movies: A Pandas DataFrame containing qualified movies data.
|
108 |
+
:return: A Pandas DataFrame containing the final qualified movies sorted by estimated user ratings.
|
109 |
+
"""
|
110 |
+
# Calculate estimated user ratings for qualified movies using SVD
|
111 |
+
qualified_movies["predicted_user_rating"] = qualified_movies["id"].apply(
|
112 |
+
lambda x: round(svd.predict(userId, indices_map.loc[x]["movieId"]).est, 2)
|
113 |
+
)
|
114 |
+
final_qualified_movies = qualified_movies.sort_values(
|
115 |
+
by=["predicted_user_rating"], ascending=False
|
116 |
+
)
|
117 |
+
return final_qualified_movies
|
118 |
+
|
119 |
+
|
120 |
+
def get_movie_recommendations_hybrid(title: str, userId: int) -> pd.DataFrame:
|
121 |
+
"""
|
122 |
+
Get movie recommendations based on a given title and user ID.
|
123 |
+
|
124 |
+
:param title: The title of the movie to find similar movies for.
|
125 |
+
:param userId: The ID of the user.
|
126 |
+
:return: A Pandas DataFrame containing the recommended movies
|
127 |
+
"""
|
128 |
+
# Get recommended movie indices based on the given title
|
129 |
+
sorted_movie_indices = get_sorted_movie_indices(title, cos_sim)
|
130 |
+
|
131 |
+
# Filter out bad movies and select the top 50 qualified movies
|
132 |
+
qualified_movies = get_qualified_movies(
|
133 |
+
df_merged, df_qualified, sorted_movie_indices
|
134 |
+
).head(50)
|
135 |
+
|
136 |
+
# Predict user ratings for qualified movies and select the top recommended movies
|
137 |
+
recommended_movies = predict_user_rating(
|
138 |
+
userId, qualified_movies, indices_map
|
139 |
+
).head(5)
|
140 |
+
|
141 |
+
recommended_movies.columns = [
|
142 |
+
"ID",
|
143 |
+
"Title",
|
144 |
+
"Genres",
|
145 |
+
"Language",
|
146 |
+
"Production Countries",
|
147 |
+
"Release Date",
|
148 |
+
"Runtime",
|
149 |
+
"Predicted User Rating",
|
150 |
+
]
|
151 |
+
|
152 |
+
return recommended_movies
|
153 |
+
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
df_qualified = pd.read_csv("data/qualified_movies.csv")
|
157 |
+
df_ratings = pd.read_csv("data/ratings_small.csv")
|
158 |
+
df_merged = pd.read_csv("data/df_merged.csv")
|
159 |
+
|
160 |
+
model = load_model()
|
161 |
+
cos_sim = encode_and_calculate_similarity(model)
|
162 |
+
movie_indices = pd.Series(
|
163 |
+
df_merged.index, index=df_merged["title"].apply(lambda title: title.lower())
|
164 |
+
).drop_duplicates()
|
165 |
+
|
166 |
+
svd = svd()
|
167 |
+
indices_map = df_merged.set_index("id")
|
168 |
+
|
169 |
+
with gr.Blocks(theme=gr.themes.Soft(text_size="lg")) as demo:
|
170 |
+
gr.Markdown(
|
171 |
+
"""
|
172 |
+
# Movie Recommendation System
|
173 |
+
"""
|
174 |
+
)
|
175 |
+
title = gr.Dropdown(
|
176 |
+
choices=df_merged["title"].unique().tolist(),
|
177 |
+
label="Movie Title",
|
178 |
+
value="Iron Man",
|
179 |
+
)
|
180 |
+
user_id = gr.Number(
|
181 |
+
value=1, label="User ID", info="Please enter a number between 1 and 671!"
|
182 |
+
)
|
183 |
+
recommend_button = gr.Button("Get Movie Recommendations")
|
184 |
+
recommended_movies = gr.DataFrame(label="Movie Recommendations")
|
185 |
+
recommend_button.click(
|
186 |
+
get_movie_recommendations_hybrid,
|
187 |
+
inputs=[title, user_id],
|
188 |
+
outputs=recommended_movies,
|
189 |
+
)
|
190 |
+
examples = gr.Examples(
|
191 |
+
examples=[
|
192 |
+
"Captain America: The First Avenger",
|
193 |
+
"The Conjuring",
|
194 |
+
"Toy Story",
|
195 |
+
"Final Destination 5",
|
196 |
+
],
|
197 |
+
inputs=[title],
|
198 |
+
)
|
199 |
+
|
200 |
+
demo.launch()
|