import tensorflow as tf model=tf.keras.models.load_model('model.h5') import streamlit as st st.header("Wonderful Wonders Classification") st.markdown("This model takes in the image input of any wonder of the world and tries to classify it.") categories=['Roman Colosseum', 'Stonehenge', 'Machu Pichu', 'Chichen Itza', 'Christ The Reedemer', 'Eiffel Tower', 'Taj Mahal', 'Pyramids Of Giza', 'Statue of Liberty', 'Burj Khalifa', 'Venezuela Angel Falls', 'Great Wall of China'] from PIL import Image uploaded_image=st.file_uploader("Upload image",type=["jpg","jpeg","webp"]) import numpy as np import cv2 if(uploaded_image!=None): display_image=Image.open(uploaded_image) st.image(display_image,width=200) if st.button("Predict"): img = np.array(display_image) img=cv2.resize(img,(150,150)) img=img/255.0 img=img.reshape(1,150,150,3) pred=model.predict(img) print(pred[0][0]) st.text(categories[np.argmax(pred)])