Spaces:
Sleeping
Sleeping
from sklearn.metrics import accuracy_score, f1_score, classification_report | |
import pandas as pd | |
def evaluate_predictions(filename): | |
data = pd.read_csv(filename) | |
# Map sentiment classes to match between 'sentiment_score' and 'summary' | |
sentiment_mapping = {"Neutral": "Neutral", "Positive sentiment": "Positive", "Negative sentiment": "Negative"} | |
data['sentiment_score_mapped'] = data['sentiment_score'].map(sentiment_mapping) | |
accuracy = accuracy_score(data['summary'], data['sentiment_score_mapped']) | |
f1 = f1_score(data['summary'], data['sentiment_score_mapped'], average='weighted') | |
class_report = classification_report(data['summary'], data['sentiment_score_mapped']) | |
print(f"Accuracy: {accuracy}") | |
print(f"F1 Score: {f1}") | |
print("Classification Report:\n", class_report) | |
# Call the function with the path to your CSV file | |
# evaluate_predictions('predictions.csv') | |