artemis-analysis / audio_predictions.py
SammyGasana's picture
Update audio_predictions.py
3990fcd verified
import requests
import string
import os
import json
from pydub import AudioSegment
from pydub.utils import which
AudioSegment.converter = which("ffmpeg")
class AudioTranslation:
def __init__(self):
# Initialize any required variables or settings
pass
def convert_to_mp3(self, file_path):
if not file_path.lower().endswith('.mp3'):
audio = AudioSegment.from_file(file_path)
file_path_without_ext = os.path.splitext(file_path[0]) # fix this line
converted_file_path = f"{file_path_without_ext}.mp3"
audio.export(converted_file_path, "mp3")
return converted_file_path
return file_path
# def transcribe_audio(self, file_path):
# url = "https://stt.umuganda.digital/transcribe/"
# converted_file_path = self.convert_to_mp3(file_path)
# with open(converted_file_path, 'rb') as file:
# files = {'file': (file_path, file, 'audio/mpeg')}
# print('transcribing audio')
# try:
# response = requests.post(url, files=files)
# response.raise_for_status()
# transcription = response.json()
# # Remove punctuation
# translator = str.maketrans('', '', string.punctuation)
# cleaned_text = transcription['text'].translate(translator)
# print('cleaned text')
# print(cleaned_text)
# return cleaned_text
# except requests.exceptions.HTTPError as err:
# print(f"HTTP error occurred: {err}")
# except Exception as err:
# print(f"An error occurred: {err}")
# return None
def transcribe_audio(self, file_path):
url = "https://stt.umuganda.digital/transcribe/"
# Check if the file is an MP3; if not, convert it
if not file_path.lower().endswith('.mp3'):
print(f"Converting file to MP3: {file_path}")
converted_file_path = self.convert_to_mp3(file_path)
else:
converted_file_path = file_path
if not os.path.exists(converted_file_path) or os.path.getsize(converted_file_path) == 0:
print(f"File does not exist or is empty: {converted_file_path}")
return None
with open(converted_file_path, 'rb') as file:
files = {'file': (os.path.basename(converted_file_path), file, 'audio/mpeg')}
print('Transcribing audio...')
try:
response = requests.post(url, files=files)
response.raise_for_status()
transcription = response.json()
# Remove punctuation
translator = str.maketrans('', '', string.punctuation)
cleaned_text = transcription['text'].translate(translator)
print('Cleaned text:', cleaned_text)
return cleaned_text
except requests.exceptions.RequestException as e:
print(f"Request error occurred: {e}")
if hasattr(e, 'response') and e.response:
print(f"Server response: {e.response.text}")
return None
def get_translation(self, src, tgt, text):
url = f"https://nmt-api.umuganda.digital/api/v1/translate/?src={src}&tgt={tgt}&text={text}"
try:
response = requests.get(url)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
return None
def translate_sentence(self, src, tgt, alt, use_multi, text):
url = "https://nmt-api.umuganda.digital/api/v1/translate/"
headers = {
'accept': 'application/json',
'Content-Type': 'application/json'
}
data = {
"src": src,
"tgt": tgt,
"alt": alt,
"use_multi": use_multi,
"text": text
}
try:
response = requests.post(url, headers=headers, data=json.dumps(data))
response.raise_for_status()
print('translation sentence')
return response.json()
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
print(response.json())
return None
def post_batch_translation(self, batch_data):
url = "https://nmt-api.umuganda.digital/api/v1/translate/batch"
headers = {'Content-Type': 'application/json'}
try:
response = requests.post(url, json=batch_data, headers=headers)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
return None
# Example usage
# audio_translator = AudioTranslation()
# transcription = audio_translator.transcribe_audio("voice_test_1.mp3")
# translation_result = audio_translator.translate_sentence("rw", "en","MULTI-rw-en","", transcription)
# print(translation_result)
'''
alternative models:
https://huggingface.co/facebook/nllb-200-3.3B
https://huggingface.co/facebook/mms-1b-all
-----
TODO:
-function ogg to mp3
- post_translation : preprocess punctuation
-function batch transcription
- merge voice-data to dataset
- run sentiment analysis prediction -->upload voice (streamlit)
'''