|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
model_name = "gpt2" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
def generate_text(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_length=100) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_text, |
|
inputs="text", |
|
outputs="text", |
|
title="GPT-2 Text Generation", |
|
description="Enter a prompt to generate text using GPT-2." |
|
) |
|
|
|
iface.launch() |