import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM # Load model and tokenizer model_name = "gpt2" # or "gpt2-medium" for a larger model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create Gradio interface iface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="GPT-2 Text Generation", description="Enter a prompt to generate text using GPT-2." ) iface.launch()