wine / app.py
SamuelHarner's picture
Upload 3 files
2b63692
raw
history blame
1.96 kB
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import requests
import hopsworks
import joblib
import pandas as pd
project = hopsworks.login()
fs = project.get_feature_store()
mr = project.get_model_registry()
model = mr.get_model("wine_model", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/wine_model.pkl")
print("Model downloaded")
def wine(fixed_acidity, citric_acid, type_white, chlorides, volatile_acidity, density, alcohol):
print("Calling function")
# df = pd.DataFrame([[sepal_length],[sepal_width],[petal_length],[petal_width]],
df = pd.DataFrame([[fixed_acidity, citric_acid, type_white, chlorides, volatile_acidity, density, alcohol]],
columns=['fixed_acidity', 'citric_acid', 'type_white', 'chlorides', 'volatile_acidity', 'density', 'alcohol'])
print("Predicting")
print(df)
# 'res' is a list of predictions returned as the label.
res = model.predict(df)
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
# the first element.
# print("Res: {0}").format(res)
print(res)
return str(res[0])
demo = gr.Interface(
fn=wine,
title="Wine Quality Predictive Analytics",
description="Experiment with fixed_acidity, citric_acid, type, chlorides, volatile_acidity, density, alcohol"
"to predict of which quality the wine is.",
allow_flagging="never",
inputs=[
gr.inputs.Number(default=7.2, label="fixed acidity"),
gr.inputs.Number(default=0.34, label="volatile acidity"),
gr.inputs.Number(default=0.32, label="citric acid"),
gr.inputs.Textbox(default="red", label="type (red, white)"),
gr.inputs.Number(default=10.5, label="alcohol"),
gr.inputs.Number(default=0.99, label="density"),
gr.inputs.Number(default=0.06, label="chlorides"),
],
outputs="text")
demo.launch(debug=True)