Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -14,13 +14,12 @@ class FinancialBERT(torch.nn.Module):
|
|
14 |
super(FinancialBERT, self).__init__()
|
15 |
self.bert = BertForSequenceClassification.from_pretrained(Config.MODEL_PATH, num_labels=3, hidden_dropout_prob=0.5)
|
16 |
|
17 |
-
def forward(self, input_ids, attention_mask, labels=None):
|
18 |
-
output = self.bert(input_ids, attention_mask=attention_mask, labels=labels)
|
19 |
return output.loss, output.logits
|
20 |
|
21 |
# Load model
|
22 |
model = FinancialBERT()
|
23 |
-
|
24 |
model.eval()
|
25 |
|
26 |
# Streamlit App
|
@@ -30,9 +29,9 @@ if st.button("Predict"):
|
|
30 |
tokenizer = Config.TOKENIZER
|
31 |
inputs = tokenizer([sentence], return_tensors="pt", truncation=True, padding=True, max_length=Config.MAX_LEN)
|
32 |
with torch.no_grad():
|
33 |
-
logits = model(
|
34 |
probs = torch.nn.functional.softmax(logits, dim=-1)
|
35 |
predictions = torch.argmax(probs, dim=-1)
|
36 |
sentiment = ['negative', 'neutral', 'positive'][predictions[0].item()]
|
37 |
|
38 |
-
st.write(f"The predicted sentiment is: {sentiment}")
|
|
|
14 |
super(FinancialBERT, self).__init__()
|
15 |
self.bert = BertForSequenceClassification.from_pretrained(Config.MODEL_PATH, num_labels=3, hidden_dropout_prob=0.5)
|
16 |
|
17 |
+
def forward(self, input_ids, attention_mask, token_type_ids, labels=None):
|
18 |
+
output = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels)
|
19 |
return output.loss, output.logits
|
20 |
|
21 |
# Load model
|
22 |
model = FinancialBERT()
|
|
|
23 |
model.eval()
|
24 |
|
25 |
# Streamlit App
|
|
|
29 |
tokenizer = Config.TOKENIZER
|
30 |
inputs = tokenizer([sentence], return_tensors="pt", truncation=True, padding=True, max_length=Config.MAX_LEN)
|
31 |
with torch.no_grad():
|
32 |
+
logits = model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], token_type_ids=inputs.get('token_type_ids'))[1]
|
33 |
probs = torch.nn.functional.softmax(logits, dim=-1)
|
34 |
predictions = torch.argmax(probs, dim=-1)
|
35 |
sentiment = ['negative', 'neutral', 'positive'][predictions[0].item()]
|
36 |
|
37 |
+
st.write(f"The predicted sentiment is: {sentiment}")
|