Spaces:
Build error
Build error
new_new_new_vaiv_app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,9 @@ import time
|
|
20 |
import logging
|
21 |
import subprocess
|
22 |
import spaces
|
|
|
|
|
|
|
23 |
|
24 |
# Git LFS pull λͺ
λ Ήμ΄ μ€ν
|
25 |
result = subprocess.run(['git', 'lfs', 'pull'], capture_output=True, text=True)
|
@@ -36,55 +39,26 @@ logger = logging.getLogger()
|
|
36 |
warnings.filterwarnings('ignore')
|
37 |
MAX_PATCHES = 512
|
38 |
# Load the models and processor
|
39 |
-
#device = torch.device("cpu")
|
40 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
41 |
|
42 |
# Paths to the models
|
43 |
-
ko_deplot_model_path = './
|
44 |
-
aihub_deplot_model_path='./deplot_k.pt'
|
45 |
-
t5_model_path = './ke_t5.pt'
|
46 |
|
47 |
# Load first model ko-deplot
|
48 |
-
|
49 |
def load_model1():
|
50 |
processor1 = Pix2StructProcessor.from_pretrained('nuua/ko-deplot')
|
51 |
model1 = Pix2StructForConditionalGeneration.from_pretrained('nuua/ko-deplot')
|
52 |
model1.load_state_dict(torch.load(ko_deplot_model_path, map_location="cpu"))
|
53 |
model1.to(torch.device("cuda"))
|
54 |
-
return processor1,model1
|
55 |
-
|
56 |
-
processor1,model1=load_model1()
|
57 |
-
|
58 |
-
# Load second model aihub-deplot
|
59 |
-
|
60 |
-
def load_model2():
|
61 |
-
processor2 = AutoProcessor.from_pretrained("ybelkada/pix2struct-base")
|
62 |
-
model2 = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-base")
|
63 |
-
model2.load_state_dict(torch.load(aihub_deplot_model_path, map_location="cpu"))
|
64 |
-
model2.to(torch.device("cuda"))
|
65 |
-
return processor2,model2
|
66 |
-
|
67 |
-
processor2,model2=load_model2()
|
68 |
|
|
|
69 |
|
70 |
-
#Load third model unichart
|
71 |
-
|
72 |
-
def load_model3():
|
73 |
-
unichart_model_path = "./unichart4/chartqa-checkpoint-epoch=2-161952"
|
74 |
-
model3 = VisionEncoderDecoderModel.from_pretrained(unichart_model_path)
|
75 |
-
processor3 = DonutProcessor.from_pretrained(unichart_model_path)
|
76 |
-
model3.to(torch.device("cuda"))
|
77 |
-
return processor3,model3
|
78 |
-
|
79 |
-
processor3,model3=load_model3()
|
80 |
-
|
81 |
-
#ko-deplot μΆλ‘ ν¨μ
|
82 |
# Function to format output
|
83 |
def format_output(prediction):
|
84 |
return prediction.replace('<0x0A>', '\n')
|
85 |
|
86 |
-
# First model prediction ko-deplot
|
87 |
-
@spaces.GPU(enable_queue=True,duration=100)
|
88 |
def predict_model1(image):
|
89 |
images = [image]
|
90 |
inputs = processor1(images=images, text="What is the title of the chart", return_tensors="pt", padding=True)
|
@@ -98,1003 +72,228 @@ def predict_model1(image):
|
|
98 |
formatted_output = format_output(outputs[0])
|
99 |
return formatted_output
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
#
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
use_cache=True,
|
134 |
-
num_beams=4,
|
135 |
-
bad_words_ids=[[processor3.tokenizer.unk_token_id]],
|
136 |
-
return_dict_in_generate=True,
|
137 |
-
)
|
138 |
-
sequence = processor3.batch_decode(outputs.sequences)[0]
|
139 |
-
sequence = sequence.replace(processor3.tokenizer.eos_token, "").replace(processor3.tokenizer.pad_token, "")
|
140 |
-
sequence = sequence.split("<s_answer>")[-1].strip()
|
141 |
-
|
142 |
-
return sequence
|
143 |
-
#function for converting aihub dataset labeling json file to ko-deplot data table
|
144 |
-
def process_json_file(input_file):
|
145 |
-
with open(input_file, 'r', encoding='utf-8') as file:
|
146 |
-
data = json.load(file)
|
147 |
-
|
148 |
-
# νμν λ°μ΄ν° μΆμΆ
|
149 |
-
chart_type = data['metadata']['chart_sub']
|
150 |
-
title = data['annotations'][0]['title']
|
151 |
-
x_axis = data['annotations'][0]['axis_label']['x_axis']
|
152 |
-
y_axis = data['annotations'][0]['axis_label']['y_axis']
|
153 |
-
legend = data['annotations'][0]['legend']
|
154 |
-
data_labels = data['annotations'][0]['data_label']
|
155 |
-
is_legend = data['annotations'][0]['is_legend']
|
156 |
-
|
157 |
-
# μνλ νμμΌλ‘ λ³ν
|
158 |
-
formatted_string = f"TITLE | {title} <0x0A> "
|
159 |
-
if 'κ°λ‘' in chart_type:
|
160 |
-
if is_legend:
|
161 |
-
# κ°λ‘ μ°¨νΈ μ²λ¦¬
|
162 |
-
formatted_string += " | ".join(legend) + " <0x0A> "
|
163 |
-
for i in range(len(y_axis)):
|
164 |
-
row = [y_axis[i]]
|
165 |
-
for j in range(len(legend)):
|
166 |
-
if i < len(data_labels[j]):
|
167 |
-
row.append(str(data_labels[j][i])) # λ°μ΄ν° κ°μ λ¬Έμμ΄λ‘ λ³ν
|
168 |
-
else:
|
169 |
-
row.append("") # λ°μ΄ν°κ° μλ κ²½μ° λΉ λ¬Έμμ΄ μΆκ°
|
170 |
-
formatted_string += " | ".join(row) + " <0x0A> "
|
171 |
-
else:
|
172 |
-
# is_legendκ° FalseμΈ κ²½μ°
|
173 |
-
for i in range(len(y_axis)):
|
174 |
-
row = [y_axis[i], str(data_labels[0][i])]
|
175 |
-
formatted_string += " | ".join(row) + " <0x0A> "
|
176 |
-
elif chart_type == "μν":
|
177 |
-
# μν μ°¨νΈ μ²λ¦¬
|
178 |
-
if legend:
|
179 |
-
used_labels = legend
|
180 |
-
else:
|
181 |
-
used_labels = x_axis
|
182 |
-
|
183 |
-
formatted_string += " | ".join(used_labels) + " <0x0A> "
|
184 |
-
row = [data_labels[0][i] for i in range(len(used_labels))]
|
185 |
-
formatted_string += " | ".join(row) + " <0x0A> "
|
186 |
-
elif chart_type == "νΌν©ν":
|
187 |
-
# νΌν©ν μ°¨νΈ μ²λ¦¬
|
188 |
-
all_legends = [ann['legend'][0] for ann in data['annotations']]
|
189 |
-
formatted_string += " | ".join(all_legends) + " <0x0A> "
|
190 |
-
|
191 |
-
combined_data = []
|
192 |
-
for i in range(len(x_axis)):
|
193 |
-
row = [x_axis[i]]
|
194 |
-
for ann in data['annotations']:
|
195 |
-
if i < len(ann['data_label'][0]):
|
196 |
-
row.append(str(ann['data_label'][0][i])) # λ°μ΄ν° κ°μ λ¬Έμμ΄λ‘ λ³ν
|
197 |
-
else:
|
198 |
-
row.append("") # λ°μ΄ν°κ° μλ κ²½μ° λΉ λ¬Έμμ΄ μΆκ°
|
199 |
-
combined_data.append(" | ".join(row))
|
200 |
-
|
201 |
-
formatted_string += " <0x0A> ".join(combined_data) + " <0x0A> "
|
202 |
-
else:
|
203 |
-
# κΈ°ν μ°¨νΈ μ²λ¦¬
|
204 |
-
if is_legend:
|
205 |
-
formatted_string += " | ".join(legend) + " <0x0A> "
|
206 |
-
for i in range(len(x_axis)):
|
207 |
-
row = [x_axis[i]]
|
208 |
-
for j in range(len(legend)):
|
209 |
-
if i < len(data_labels[j]):
|
210 |
-
row.append(str(data_labels[j][i])) # λ°μ΄ν° κ°μ λ¬Έμμ΄λ‘ λ³ν
|
211 |
-
else:
|
212 |
-
row.append("") # λ°μ΄ν°κ° μλ κ²½μ° λΉ λ¬Έμμ΄ μΆκ°
|
213 |
-
formatted_string += " | ".join(row) + " <0x0A> "
|
214 |
-
else:
|
215 |
-
for i in range(len(x_axis)):
|
216 |
-
if i < len(data_labels[0]):
|
217 |
-
formatted_string += f"{x_axis[i]} | {str(data_labels[0][i])} <0x0A> "
|
218 |
-
else:
|
219 |
-
formatted_string += f"{x_axis[i]} | <0x0A> " # λ°μ΄ν°κ° μλ κ²½μ° λΉ λ¬Έμμ΄ μΆκ°
|
220 |
-
|
221 |
-
# λ§μ§λ§ "<0x0A> " μ κ±°
|
222 |
-
formatted_string = formatted_string[:-8]
|
223 |
-
return format_output(formatted_string)
|
224 |
-
|
225 |
-
def chart_data(data):
|
226 |
-
datatable = []
|
227 |
-
num = len(data)
|
228 |
-
for n in range(num):
|
229 |
-
title = data[n]['title'] if data[n]['is_title'] else ''
|
230 |
-
legend = data[n]['legend'] if data[n]['is_legend'] else ''
|
231 |
-
datalabel = data[n]['data_label'] if data[n]['is_datalabel'] else [0]
|
232 |
-
unit = data[n]['unit'] if data[n]['is_unit'] else ''
|
233 |
-
base = data[n]['base'] if data[n]['is_base'] else ''
|
234 |
-
x_axis_title = data[n]['axis_title']['x_axis']
|
235 |
-
y_axis_title = data[n]['axis_title']['y_axis']
|
236 |
-
x_axis = data[n]['axis_label']['x_axis'] if data[n]['is_axis_label_x_axis'] else [0]
|
237 |
-
y_axis = data[n]['axis_label']['y_axis'] if data[n]['is_axis_label_y_axis'] else [0]
|
238 |
-
|
239 |
-
if len(legend) > 1:
|
240 |
-
datalabel = np.array(datalabel).transpose().tolist()
|
241 |
-
|
242 |
-
datatable.append([title, legend, datalabel, unit, base, x_axis_title, y_axis_title, x_axis, y_axis])
|
243 |
-
|
244 |
-
return datatable
|
245 |
-
|
246 |
-
def datatable(data, chart_type):
|
247 |
-
data_table = ''
|
248 |
-
num = len(data)
|
249 |
-
|
250 |
-
if len(data) == 2:
|
251 |
-
temp = []
|
252 |
-
temp.append(f"λμ: {data[0][4]}")
|
253 |
-
temp.append(f"μ λͺ©: {data[0][0]}")
|
254 |
-
temp.append(f"μ ν: {' '.join(chart_type[0:2])}")
|
255 |
-
temp.append(f"{data[0][5]} | {data[0][1][0]}({data[0][3]}) | {data[1][1][0]}({data[1][3]})")
|
256 |
-
|
257 |
-
x_axis = data[0][7]
|
258 |
-
for idx, x in enumerate(x_axis):
|
259 |
-
temp.append(f"{x} | {data[0][2][0][idx]} | {data[1][2][0][idx]}")
|
260 |
-
|
261 |
-
data_table = '\n'.join(temp)
|
262 |
-
else:
|
263 |
-
for n in range(num):
|
264 |
-
temp = []
|
265 |
-
|
266 |
-
title, legend, datalabel, unit, base, x_axis_title, y_axis_title, x_axis, y_axis = data[n]
|
267 |
-
legend = [element + f"({unit})" for element in legend]
|
268 |
-
|
269 |
-
if len(legend) > 1:
|
270 |
-
temp.append(f"λμ: {base}")
|
271 |
-
temp.append(f"μ λͺ©: {title}")
|
272 |
-
temp.append(f"μ ν: {' '.join(chart_type[0:2])}")
|
273 |
-
temp.append(f"{x_axis_title} | {' | '.join(legend)}")
|
274 |
-
|
275 |
-
if chart_type[2] == "μν":
|
276 |
-
datalabel = sum(datalabel, [])
|
277 |
-
temp.append(f"{' | '.join([str(d) for d in datalabel])}")
|
278 |
-
data_table = '\n'.join(temp)
|
279 |
-
else:
|
280 |
-
axis = y_axis if chart_type[2] == "κ°λ‘ λ§λν" else x_axis
|
281 |
-
for idx, (x, d) in enumerate(zip(axis, datalabel)):
|
282 |
-
temp_d = [str(e) for e in d]
|
283 |
-
temp_d = " | ".join(temp_d)
|
284 |
-
row = f"{x} | {temp_d}"
|
285 |
-
temp.append(row)
|
286 |
-
data_table = '\n'.join(temp)
|
287 |
-
else:
|
288 |
-
temp.append(f"λμ: {base}")
|
289 |
-
temp.append(f"μ λͺ©: {title}")
|
290 |
-
temp.append(f"μ ν: {' '.join(chart_type[0:2])}")
|
291 |
-
temp.append(f"{x_axis_title} | {unit}")
|
292 |
-
axis = y_axis if chart_type[2] == "κ°λ‘ λ§λν" else x_axis
|
293 |
-
datalabel = datalabel[0]
|
294 |
-
|
295 |
-
for idx, x in enumerate(axis):
|
296 |
-
row = f"{x} | {str(datalabel[idx])}"
|
297 |
-
temp.append(row)
|
298 |
-
data_table = '\n'.join(temp)
|
299 |
-
|
300 |
-
return data_table
|
301 |
-
|
302 |
-
#function for converting aihub dataset labeling json file to aihub-deplot data table
|
303 |
-
def process_json_file2(input_file):
|
304 |
-
with open(input_file, 'r', encoding='utf-8') as file:
|
305 |
-
data = json.load(file)
|
306 |
-
# νμν λ°μ΄ν° μΆμΆ
|
307 |
-
chart_multi = data['metadata']['chart_multi']
|
308 |
-
chart_main = data['metadata']['chart_main']
|
309 |
-
chart_sub = data['metadata']['chart_sub']
|
310 |
-
chart_type = [chart_multi, chart_sub, chart_main]
|
311 |
-
chart_annotations = data['annotations']
|
312 |
-
|
313 |
-
charData = chart_data(chart_annotations)
|
314 |
-
dataTable = datatable(charData, chart_type)
|
315 |
-
return dataTable
|
316 |
-
|
317 |
-
# RMS
|
318 |
-
def _to_float(text): # λ¨μ λΌκ³ μ«μλ§..?
|
319 |
-
try:
|
320 |
-
if text.endswith("%"):
|
321 |
-
# Convert percentages to floats.
|
322 |
-
return float(text.rstrip("%")) / 100.0
|
323 |
-
else:
|
324 |
-
return float(text)
|
325 |
-
except ValueError:
|
326 |
-
return None
|
327 |
-
|
328 |
-
|
329 |
-
def _get_relative_distance(
|
330 |
-
target, prediction, theta = 1.0
|
331 |
-
):
|
332 |
-
"""Returns min(1, |target-prediction|/|target|)."""
|
333 |
-
if not target:
|
334 |
-
return int(not prediction)
|
335 |
-
distance = min(abs((target - prediction) / target), 1)
|
336 |
-
return distance if distance < theta else 1
|
337 |
-
|
338 |
-
def anls_metric(target: str, prediction: str, theta: float = 0.5):
|
339 |
-
edit_distance = editdistance.eval(target, prediction)
|
340 |
-
normalize_ld = edit_distance / max(len(target), len(prediction))
|
341 |
-
return 1 - normalize_ld if normalize_ld < theta else 0
|
342 |
-
|
343 |
-
def _permute(values, indexes):
|
344 |
-
return tuple(values[i] if i < len(values) else "" for i in indexes)
|
345 |
-
|
346 |
-
|
347 |
-
@dataclasses.dataclass(frozen=True)
|
348 |
-
class Table:
|
349 |
-
"""Helper class for the content of a markdown table."""
|
350 |
-
|
351 |
-
base: Optional[str] = None
|
352 |
-
title: Optional[str] = None
|
353 |
-
chartType: Optional[str] = None
|
354 |
-
headers: tuple[str, Ellipsis] = dataclasses.field(default_factory=tuple)
|
355 |
-
rows: tuple[tuple[str, Ellipsis], Ellipsis] = dataclasses.field(default_factory=tuple)
|
356 |
-
|
357 |
-
def permuted(self, indexes):
|
358 |
-
"""Builds a version of the table changing the column order."""
|
359 |
-
return Table(
|
360 |
-
base=self.base,
|
361 |
-
title=self.title,
|
362 |
-
chartType=self.chartType,
|
363 |
-
headers=_permute(self.headers, indexes),
|
364 |
-
rows=tuple(_permute(row, indexes) for row in self.rows),
|
365 |
-
)
|
366 |
-
|
367 |
-
def aligned(
|
368 |
-
self, headers, text_theta = 0.5
|
369 |
-
):
|
370 |
-
"""Builds a column permutation with headers in the most correct order."""
|
371 |
-
if len(headers) != len(self.headers):
|
372 |
-
raise ValueError(f"Header length {headers} must match {self.headers}.")
|
373 |
-
distance = []
|
374 |
-
for h2 in self.headers:
|
375 |
-
distance.append(
|
376 |
-
[
|
377 |
-
1 - anls_metric(h1, h2, text_theta)
|
378 |
-
for h1 in headers
|
379 |
-
]
|
380 |
-
)
|
381 |
-
cost_matrix = np.array(distance)
|
382 |
-
row_ind, col_ind = optimize.linear_sum_assignment(cost_matrix)
|
383 |
-
permutation = [idx for _, idx in sorted(zip(col_ind, row_ind))]
|
384 |
-
score = (1 - cost_matrix)[permutation[1:], range(1, len(row_ind))].prod()
|
385 |
-
return self.permuted(permutation), score
|
386 |
-
|
387 |
-
def _parse_table(text, transposed = False): # ν μ λͺ©, μ΄ μ΄λ¦, ν μ°ΎκΈ°
|
388 |
-
"""Builds a table from a markdown representation."""
|
389 |
-
lines = text.lower().splitlines()
|
390 |
-
if not lines:
|
391 |
-
return Table()
|
392 |
-
|
393 |
-
if lines[0].startswith("λμ: "):
|
394 |
-
base = lines[0][len("λμ: ") :].strip()
|
395 |
-
offset = 1 #
|
396 |
-
else:
|
397 |
-
base = None
|
398 |
-
offset = 0
|
399 |
-
if lines[1].startswith("μ λͺ©: "):
|
400 |
-
title = lines[1][len("μ λͺ©: ") :].strip()
|
401 |
-
offset = 2 #
|
402 |
-
else:
|
403 |
-
title = None
|
404 |
-
offset = 1
|
405 |
-
if lines[2].startswith("μ ν: "):
|
406 |
-
chartType = lines[2][len("μ ν: ") :].strip()
|
407 |
-
offset = 3 #
|
408 |
-
else:
|
409 |
-
chartType = None
|
410 |
-
|
411 |
-
if len(lines) < offset + 1:
|
412 |
-
return Table(base=base, title=title, chartType=chartType)
|
413 |
-
|
414 |
-
rows = []
|
415 |
-
for line in lines[offset:]:
|
416 |
-
rows.append(tuple(v.strip() for v in line.split(" | ")))
|
417 |
-
if transposed:
|
418 |
-
rows = [tuple(row) for row in itertools.zip_longest(*rows, fillvalue="")]
|
419 |
-
return Table(base=base, title=title, chartType=chartType, headers=rows[0], rows=tuple(rows[1:]))
|
420 |
-
|
421 |
-
def _get_table_datapoints(table):
|
422 |
-
datapoints = {}
|
423 |
-
if table.base is not None:
|
424 |
-
datapoints["λμ"] = table.base
|
425 |
-
if table.title is not None:
|
426 |
-
datapoints["μ λͺ©"] = table.title
|
427 |
-
if table.chartType is not None:
|
428 |
-
datapoints["μ ν"] = table.chartType
|
429 |
-
if not table.rows or len(table.headers) <= 1:
|
430 |
-
return datapoints
|
431 |
-
for row in table.rows:
|
432 |
-
for header, cell in zip(table.headers[1:], row[1:]):
|
433 |
-
#print(f"{row[0]} {header} >> {cell}")
|
434 |
-
datapoints[f"{row[0]} {header}"] = cell #
|
435 |
-
return datapoints
|
436 |
-
|
437 |
-
def _get_datapoint_metric( #
|
438 |
-
target,
|
439 |
-
prediction,
|
440 |
-
text_theta=0.5,
|
441 |
-
number_theta=0.1,
|
442 |
-
):
|
443 |
-
"""Computes a metric that scores how similar two datapoint pairs are."""
|
444 |
-
key_metric = anls_metric(
|
445 |
-
target[0], prediction[0], text_theta
|
446 |
-
)
|
447 |
-
pred_float = _to_float(prediction[1]) # μ«μμΈμ§ νμΈ
|
448 |
-
target_float = _to_float(target[1])
|
449 |
-
if pred_float is not None and target_float:
|
450 |
-
return key_metric * (
|
451 |
-
1 - _get_relative_distance(target_float, pred_float, number_theta) # μ«μλ©΄ μλμ κ±°λ¦¬κ° κ³μ°
|
452 |
-
)
|
453 |
-
elif target[1] == prediction[1]:
|
454 |
-
return key_metric
|
455 |
-
else:
|
456 |
-
return key_metric * anls_metric(
|
457 |
-
target[1], prediction[1], text_theta
|
458 |
-
)
|
459 |
-
|
460 |
-
def _table_datapoints_precision_recall_f1( # μ° κ³μ°
|
461 |
-
target_table,
|
462 |
-
prediction_table,
|
463 |
-
text_theta = 0.5,
|
464 |
-
number_theta = 0.1,
|
465 |
-
):
|
466 |
-
"""Calculates matching similarity between two tables as dicts."""
|
467 |
-
target_datapoints = list(_get_table_datapoints(target_table).items())
|
468 |
-
prediction_datapoints = list(_get_table_datapoints(prediction_table).items())
|
469 |
-
if not target_datapoints and not prediction_datapoints:
|
470 |
-
return 1, 1, 1
|
471 |
-
if not target_datapoints:
|
472 |
-
return 0, 1, 0
|
473 |
-
if not prediction_datapoints:
|
474 |
-
return 1, 0, 0
|
475 |
-
distance = []
|
476 |
-
for t, _ in target_datapoints:
|
477 |
-
distance.append(
|
478 |
-
[
|
479 |
-
1 - anls_metric(t, p, text_theta)
|
480 |
-
for p, _ in prediction_datapoints
|
481 |
]
|
482 |
)
|
483 |
-
cost_matrix = np.array(distance)
|
484 |
-
row_ind, col_ind = optimize.linear_sum_assignment(cost_matrix)
|
485 |
-
score = 0
|
486 |
-
for r, c in zip(row_ind, col_ind):
|
487 |
-
score += _get_datapoint_metric(
|
488 |
-
target_datapoints[r], prediction_datapoints[c], text_theta, number_theta
|
489 |
-
)
|
490 |
-
if score == 0:
|
491 |
-
return 0, 0, 0
|
492 |
-
precision = score / len(prediction_datapoints)
|
493 |
-
recall = score / len(target_datapoints)
|
494 |
-
return precision, recall, 2 * precision * recall / (precision + recall)
|
495 |
-
|
496 |
-
def table_datapoints_precision_recall_per_point( # κ°κ° κ³μ°...
|
497 |
-
targets,
|
498 |
-
predictions,
|
499 |
-
text_theta = 0.5,
|
500 |
-
number_theta = 0.1,
|
501 |
-
):
|
502 |
-
"""Computes precisin recall and F1 metrics given two flattened tables.
|
503 |
-
Parses each string into a dictionary of keys and values using row and column
|
504 |
-
headers. Then we match keys between the two dicts as long as their relative
|
505 |
-
levenshtein distance is below a threshold. Values are also compared with
|
506 |
-
ANLS if strings or relative distance if they are numeric.
|
507 |
-
Args:
|
508 |
-
targets: list of list of strings.
|
509 |
-
predictions: list of strings.
|
510 |
-
text_theta: relative edit distance above this is set to the maximum of 1.
|
511 |
-
number_theta: relative error rate above this is set to the maximum of 1.
|
512 |
-
Returns:
|
513 |
-
Dictionary with per-point precision, recall and F1
|
514 |
-
"""
|
515 |
-
assert len(targets) == len(predictions)
|
516 |
-
per_point_scores = {"precision": [], "recall": [], "f1": []}
|
517 |
-
for pred, target in zip(predictions, targets):
|
518 |
-
all_metrics = []
|
519 |
-
for transposed in [True, False]:
|
520 |
-
pred_table = _parse_table(pred, transposed=transposed)
|
521 |
-
target_table = _parse_table(target, transposed=transposed)
|
522 |
-
|
523 |
-
all_metrics.extend([_table_datapoints_precision_recall_f1(target_table, pred_table, text_theta, number_theta)])
|
524 |
|
525 |
-
|
526 |
-
|
527 |
-
per_point_scores["recall"].append(r)
|
528 |
-
per_point_scores["f1"].append(f)
|
529 |
-
return per_point_scores
|
530 |
|
531 |
-
def
|
532 |
-
|
533 |
-
predictions,
|
534 |
-
text_theta = 0.5,
|
535 |
-
number_theta = 0.1,
|
536 |
-
):
|
537 |
-
"""Aggregated version of table_datapoints_precision_recall_per_point().
|
538 |
-
Same as table_datapoints_precision_recall_per_point() but returning aggregated
|
539 |
-
scores instead of per-point scores.
|
540 |
-
Args:
|
541 |
-
targets: list of list of strings.
|
542 |
-
predictions: list of strings.
|
543 |
-
text_theta: relative edit distance above this is set to the maximum of 1.
|
544 |
-
number_theta: relative error rate above this is set to the maximum of 1.
|
545 |
-
Returns:
|
546 |
-
Dictionary with aggregated precision, recall and F1
|
547 |
-
"""
|
548 |
-
score_dict = table_datapoints_precision_recall_per_point(
|
549 |
-
targets, predictions, text_theta, number_theta
|
550 |
-
)
|
551 |
-
return {
|
552 |
-
"table_datapoints_precision": (
|
553 |
-
sum(score_dict["precision"]) / len(targets)
|
554 |
-
),
|
555 |
-
"table_datapoints_recall": (
|
556 |
-
sum(score_dict["recall"]) / len(targets)
|
557 |
-
),
|
558 |
-
"table_datapoints_f1": sum(score_dict["f1"]) / len(targets),
|
559 |
-
}
|
560 |
-
|
561 |
-
def evaluate_rms(generated_table,label_table):
|
562 |
-
predictions=[generated_table]
|
563 |
-
targets=[label_table]
|
564 |
-
RMS = table_datapoints_precision_recall(targets, predictions)
|
565 |
-
return RMS
|
566 |
-
|
567 |
-
def ko_deplot_convert_to_dataframe(generated_table_str):
|
568 |
-
lines = generated_table_str.strip().split(" \n")
|
569 |
-
headers=[]
|
570 |
-
data=[]
|
571 |
-
for i in range(len(lines[1].split(" | "))):
|
572 |
-
headers.append(f"{i}")
|
573 |
-
for line in lines[1:len(lines)-1]:
|
574 |
-
data.append(line.split("| "))
|
575 |
-
df = pd.DataFrame(data, columns=headers)
|
576 |
-
return df
|
577 |
-
|
578 |
-
def ko_deplot_convert_to_dataframe2(label_table_str):
|
579 |
-
lines = label_table_str.strip().split(" \n")
|
580 |
-
headers=[]
|
581 |
data=[]
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
lines = table_str.strip().split("\n")
|
591 |
-
headers = []
|
592 |
-
if(len(lines[3].split(" | "))>len(lines[4].split(" | "))):
|
593 |
-
category=lines[3].split(" | ")
|
594 |
-
del category[0]
|
595 |
-
value=lines[4].split(" | ")
|
596 |
-
df=pd.DataFrame({"λ²λ‘":category,"κ°":value})
|
597 |
-
return df
|
598 |
-
else:
|
599 |
-
for i in range(len(lines[3].split(" | "))):
|
600 |
-
headers.append(f"{i}")
|
601 |
-
data = [line.split(" | ") for line in lines[3:]]
|
602 |
-
df = pd.DataFrame(data, columns=headers)
|
603 |
-
return df
|
604 |
-
def unichart_convert_to_dataframe(table_str):
|
605 |
-
lines=table_str.split(" & ")
|
606 |
-
headers=[]
|
607 |
-
data=[]
|
608 |
-
del lines[0]
|
609 |
-
for i in range(len(lines[1].split(" | "))):
|
610 |
-
headers.append(f"{i}")
|
611 |
-
if lines[0]=="value":
|
612 |
-
for line in lines[1:]:
|
613 |
-
data.append(line.split(" | "))
|
614 |
-
else:
|
615 |
-
category=lines[0].split(" | ")
|
616 |
-
category.insert(0," ")
|
617 |
-
data.append(category)
|
618 |
-
for line in lines[1:]:
|
619 |
-
data.append(line.split(" | "))
|
620 |
-
df=pd.DataFrame(data,columns=headers)
|
621 |
-
return df
|
622 |
-
|
623 |
-
class Highlighter:
|
624 |
-
def __init__(self):
|
625 |
-
self.row = 0
|
626 |
-
self.col = 0
|
627 |
-
|
628 |
-
def compare_and_highlight(self, pred_table_elem, target_table, pred_table_row, props=''):
|
629 |
-
if self.row >= pred_table_row:
|
630 |
-
self.col += 1
|
631 |
-
self.row = 0
|
632 |
-
if pred_table_elem != target_table.iloc[self.row, self.col]:
|
633 |
-
self.row += 1
|
634 |
-
return props
|
635 |
-
else:
|
636 |
-
self.row += 1
|
637 |
-
return None
|
638 |
-
|
639 |
-
# 1. λ°μ΄ν° λ‘λ
|
640 |
-
aihub_deplot_result_df = pd.read_csv('./aihub_deplot_result.csv')
|
641 |
-
ko_deplot_result= './ko-deplot-base-pred-epoch3-refinetuning.json'
|
642 |
-
unichart_result='./unichart_results.json'
|
643 |
-
|
644 |
-
# 2. 체ν¬ν΄μΌ νλ μ΄λ―Έμ§ νμΌ λ‘λ
|
645 |
-
def load_image_checklist(file):
|
646 |
-
with open(file, 'r') as f:
|
647 |
-
#image_names = [f'"{line.strip()}"' for line in f]
|
648 |
-
image_names = f.read().splitlines()
|
649 |
-
return image_names
|
650 |
-
|
651 |
-
# 3. νμ¬ μΈλ±μ€λ₯Ό μΆμ νκΈ° μν λ³μ
|
652 |
-
current_index = 0
|
653 |
-
image_names = []
|
654 |
-
def show_image(current_idx):
|
655 |
-
image_name=image_names[current_idx]
|
656 |
-
image_path = f"./top_20_percent_images/{image_name}.jpg"
|
657 |
-
if not os.path.exists(image_path):
|
658 |
-
image_path = f"./bottom_20_percent_images/{image_name}.jpg"
|
659 |
-
return Image.open(image_path)
|
660 |
-
|
661 |
-
# 4. λ²νΌ ν΄λ¦ μ΄λ²€νΈ νΈλ€λ¬
|
662 |
-
def non_real_time_check(file):
|
663 |
-
highlighter1 = Highlighter()
|
664 |
-
highlighter2 = Highlighter()
|
665 |
-
highlighter3 = Highlighter()
|
666 |
-
#global image_names, current_index
|
667 |
-
#image_names = load_image_checklist(file)
|
668 |
-
#current_index = 0
|
669 |
-
#image=show_image(current_index)
|
670 |
-
file_name =image_names[current_index].replace("Source","Label")
|
671 |
-
|
672 |
-
json_path="./ko_deplot_labeling_data.json"
|
673 |
-
with open(json_path, 'r', encoding='utf-8') as file:
|
674 |
-
json_data = json.load(file)
|
675 |
-
for key, value in json_data.items():
|
676 |
-
if key == file_name:
|
677 |
-
ko_deplot_labeling_str=value.get("txt").replace("<0x0A>","\n")
|
678 |
-
ko_deplot_label_title=ko_deplot_labeling_str.split(" \n ")[0].replace("TITLE | ","μ λͺ©:")
|
679 |
-
break
|
680 |
-
|
681 |
-
ko_deplot_rms_path="./ko_deplot_rms.txt"
|
682 |
-
unichart_rms_path="./unichart_rms.txt"
|
683 |
-
|
684 |
-
json_path="./unichart_labeling_data.json"
|
685 |
-
with open(json_path, 'r', encoding='utf-8') as file:
|
686 |
-
json_data = json.load(file)
|
687 |
-
for entry in json_data:
|
688 |
-
if entry["imgname"]==image_names[current_index]+".jpg":
|
689 |
-
unichart_labeling_str=entry["label"]
|
690 |
-
unichart_label_title=entry["label"].split(" & ")[0].split(" | ")[1]
|
691 |
-
|
692 |
-
with open(ko_deplot_rms_path,'r',encoding='utf-8') as file:
|
693 |
-
lines=file.readlines()
|
694 |
-
flag=0
|
695 |
-
for line in lines:
|
696 |
-
parts=line.strip().split(", ")
|
697 |
-
if(len(parts)==2 and parts[0]==image_names[current_index]):
|
698 |
-
ko_deplot_rms=parts[1]
|
699 |
-
flag=1
|
700 |
-
break
|
701 |
-
if(flag==0):
|
702 |
-
ko_deplot_rms="none"
|
703 |
-
|
704 |
-
with open(unichart_rms_path,'r',encoding='utf-8') as file:
|
705 |
-
lines=file.readlines()
|
706 |
-
flag=0
|
707 |
-
for line in lines:
|
708 |
-
parts=line.strip().split(": ")
|
709 |
-
if(len(parts)==2 and parts[0]==image_names[current_index]+".jpg"):
|
710 |
-
unichart_rms=parts[1]
|
711 |
-
flag=1
|
712 |
-
break
|
713 |
-
if(flag==0):
|
714 |
-
unichart_rms="none"
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
ko_deplot_generated_title,ko_deplot_generated_table=ko_deplot_display_results(current_index)
|
719 |
-
aihub_deplot_generated_table,aihub_deplot_label_table,aihub_deplot_generated_title,aihub_deplot_label_title=aihub_deplot_display_results(current_index)
|
720 |
-
unichart_generated_table,unichart_generated_title=unichart_display_results(current_index)
|
721 |
-
#ko_deplot_RMS=evaluate_rms(ko_deplot_generated_table,ko_deplot_labeling_str)
|
722 |
-
aihub_deplot_RMS=evaluate_rms(aihub_deplot_generated_table,aihub_deplot_label_table)
|
723 |
-
|
724 |
-
|
725 |
-
if flag == 1:
|
726 |
-
value = [round(float(ko_deplot_rms), 1)]
|
727 |
else:
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
unichart_score_table=pd.DataFrame({
|
737 |
-
'category':['f1'],
|
738 |
-
'value':value
|
739 |
-
})
|
740 |
-
aihub_deplot_score_table=pd.DataFrame({
|
741 |
-
'category': ['precision', 'recall', 'f1'],
|
742 |
-
'value': [
|
743 |
-
round(aihub_deplot_RMS['table_datapoints_precision'],1),
|
744 |
-
round(aihub_deplot_RMS['table_datapoints_recall'],1),
|
745 |
-
round(aihub_deplot_RMS['table_datapoints_f1'],1)
|
746 |
-
]
|
747 |
-
})
|
748 |
-
|
749 |
-
#ko_deplot_generated_df=ko_deplot_convert_to_dataframe(ko_deplot_generated_table)
|
750 |
-
#aihub_deplot_generated_df=aihub_deplot_convert_to_dataframe(aihub_deplot_generated_table)
|
751 |
-
#unichart_generated_df=unichart_convert_to_dataframe(unichart_generated_table)
|
752 |
-
|
753 |
try:
|
754 |
-
|
755 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
756 |
except Exception as e:
|
757 |
-
return
|
758 |
-
ko_deplot_labeling_df=ko_deplot_convert_to_dataframe2(ko_deplot_labeling_str)
|
759 |
-
#aihub_deplot_labeling_df=aihub_deplot_convert_to_dataframe(aihub_deplot_label_table)
|
760 |
-
unichart_labeling_df=unichart_convert_to_dataframe(unichart_labeling_str)
|
761 |
-
|
762 |
-
ko_deplot_generated_df_row=ko_deplot_generated_df.shape[0]
|
763 |
-
#aihub_deplot_generated_df_row=aihub_deplot_generated_df.shape[0]
|
764 |
-
unichart_generated_df_row=unichart_generated_df.shape[0]
|
765 |
-
|
766 |
-
|
767 |
-
styled_ko_deplot_table=ko_deplot_generated_df.style.applymap(highlighter1.compare_and_highlight,target_table=ko_deplot_labeling_df,pred_table_row=ko_deplot_generated_df_row,props='color:red')
|
768 |
-
|
769 |
-
|
770 |
-
#styled_aihub_deplot_table=aihub_deplot_generated_df.style.applymap(highlighter2.compare_and_highlight,target_table=aihub_deplot_labeling_df,pred_table_row=aihub_deplot_generated_df_row,props='color:red')
|
771 |
-
|
772 |
-
|
773 |
-
styled_unichart_table=unichart_generated_df.style.applymap(highlighter3.compare_and_highlight,target_table=unichart_labeling_df,pred_table_row=unichart_generated_df_row,props='color:red')
|
774 |
-
|
775 |
-
#return ko_deplot_convert_to_dataframe(ko_deplot_generated_table), aihub_deplot_convert_to_dataframe(aihub_deplot_generated_table), aihub_deplot_convert_to_dataframe(label_table), ko_deplot_score_table, aihub_deplot_score_table
|
776 |
-
return gr.DataFrame(styled_ko_deplot_table,label=ko_deplot_generated_title+"(VAIV_DePlot μΆλ‘ κ²°κ³Ό)"),None,gr.DataFrame(styled_unichart_table,label="μ λͺ©:"+unichart_generated_title+"(VAIV_UniChart μΆλ‘ κ²°κ³Ό)"),gr.DataFrame(ko_deplot_labeling_df,label=ko_deplot_label_title+"(VAIV_DePlot μ λ΅ ν
μ΄λΈ)"),None,gr.DataFrame(unichart_labeling_df,label="μ λͺ©:"+unichart_label_title+"(VAIV_UniChart μ λ΅ ν
μ΄λΈ)"),ko_deplot_score_table, aihub_deplot_score_table,unichart_score_table,None,None,0
|
777 |
-
|
778 |
-
|
779 |
-
def ko_deplot_display_results(index):
|
780 |
-
filename=image_names[index]+".jpg"
|
781 |
-
with open(ko_deplot_result, 'r', encoding='utf-8') as f:
|
782 |
-
data = json.load(f)
|
783 |
-
for entry in data:
|
784 |
-
if entry['filename'].endswith(filename):
|
785 |
-
#return entry['table']
|
786 |
-
parts=entry['table'].split("\n",1)
|
787 |
-
return parts[0].replace("TITLE | ","μ λͺ©:"),entry['table']
|
788 |
-
|
789 |
-
def aihub_deplot_display_results(index):
|
790 |
-
if index < 0 or index >= len(image_names):
|
791 |
-
return "Index out of range", None, None
|
792 |
-
image_name = image_names[index]
|
793 |
-
image_row = aihub_deplot_result_df[aihub_deplot_result_df['data_id'] == image_name]
|
794 |
-
if not image_row.empty:
|
795 |
-
generated_table = image_row['generated_table'].values[0]
|
796 |
-
generated_title=generated_table.split("\n")[1]
|
797 |
-
label_table = image_row['label_table'].values[0]
|
798 |
-
label_title=label_table.split("\n")[1]
|
799 |
-
return generated_table, label_table, generated_title, label_title
|
800 |
-
else:
|
801 |
-
return "No results found for the image", None, None
|
802 |
-
def unichart_display_results(index):
|
803 |
-
image_name=image_names[index]
|
804 |
-
with open(unichart_result,'r',encoding='utf-8') as f:
|
805 |
-
data=json.load(f)
|
806 |
-
for entry in data:
|
807 |
-
if entry['imgname']==image_name+".jpg":
|
808 |
-
return entry['label'],entry['label'].split(" & ")[0].split(" | ")[1]
|
809 |
-
|
810 |
-
def previous_image():
|
811 |
-
global current_index
|
812 |
-
if current_index>0:
|
813 |
-
current_index-=1
|
814 |
-
image=show_image(current_index)
|
815 |
-
return image, image_names[current_index],gr.update(interactive=current_index>0), gr.update(interactive=current_index<len(image_names)-1)
|
816 |
-
|
817 |
-
def next_image():
|
818 |
-
global current_index
|
819 |
-
if current_index<len(image_names)-1:
|
820 |
-
current_index+=1
|
821 |
-
image=show_image(current_index)
|
822 |
-
return image, image_names[current_index],gr.update(interactive=current_index>0), gr.update(interactive=current_index<len(image_names)-1)
|
823 |
|
824 |
def real_time_check(image_file):
|
825 |
-
highlighter1 = Highlighter()
|
826 |
-
highlighter2 = Highlighter()
|
827 |
-
highlighter3=Highlighter()
|
828 |
image = Image.open(image_file)
|
829 |
-
|
830 |
-
|
831 |
-
parts=result_model1.split("\n")
|
832 |
del parts[-1]
|
833 |
-
|
834 |
-
|
835 |
-
#ko_deplot_table=ko_deplot_convert_to_dataframe2(result_model1)
|
836 |
-
|
837 |
-
result_model3=predict_model3(image)
|
838 |
-
#unichart_table=unichart_convert_to_dataframe(result_model3)
|
839 |
-
unichart_generated_title=result_model3.split(" & ")[0].split(" | ")[1]
|
840 |
-
|
841 |
try:
|
842 |
-
|
843 |
-
|
|
|
844 |
except Exception as e:
|
845 |
-
return None,None,
|
846 |
-
|
847 |
-
#aihub_labeling_data_json="./labeling_data/"+file_name+".json"
|
848 |
-
if os.path.basename(image_file.name).startswith("C_Source"):
|
849 |
-
image_base_name = os.path.basename(image_file.name).replace("Source","Label")
|
850 |
-
file_name, _ = os.path.splitext(image_base_name)
|
851 |
-
json_path="./ko_deplot_labeling_data.json"
|
852 |
-
with open(json_path, 'r', encoding='utf-8') as file:
|
853 |
-
json_data = json.load(file)
|
854 |
-
for key, value in json_data.items():
|
855 |
-
if key == file_name:
|
856 |
-
ko_deplot_labeling_str=value.get("txt").replace("<0x0A>","\n")
|
857 |
-
ko_deplot_label_title=ko_deplot_labeling_str.split(" \n ")[0].split(" | ")[1]
|
858 |
-
break
|
859 |
-
|
860 |
-
ko_deplot_label_table=ko_deplot_convert_to_dataframe2(ko_deplot_labeling_str)
|
861 |
-
|
862 |
-
#aihub_deplot_labeling_str=process_json_file2(aihub_labeling_data_json)
|
863 |
-
#aihub_deplot_label_title=aihub_deplot_labeling_str.split("\n")[1].split(":")[1]
|
864 |
-
|
865 |
-
json_path="./unichart_labeling_data.json"
|
866 |
-
with open(json_path, 'r', encoding='utf-8') as file:
|
867 |
-
json_data = json.load(file)
|
868 |
-
for entry in json_data:
|
869 |
-
if entry["imgname"]==os.path.basename(image_file.name):
|
870 |
-
unichart_labeling_str=entry["label"]
|
871 |
-
unichart_label_title=entry["label"].split(" & ")[0].split(" | ")[1]
|
872 |
-
unichart_label_table=unichart_convert_to_dataframe(unichart_labeling_str)
|
873 |
-
|
874 |
-
ko_deplot_RMS=evaluate_rms(result_model1,ko_deplot_labeling_str)
|
875 |
-
unichart_RMS=evaluate_rms(result_model3.replace("Characteristic","Title").replace("&","\n"),unichart_labeling_str.replace("Characteristic","Title").replace("&","\n"))
|
876 |
-
ko_deplot_score_table=pd.DataFrame({
|
877 |
-
'category': ['precision', 'recall', 'f1'],
|
878 |
-
'value': [
|
879 |
-
round(ko_deplot_RMS['table_datapoints_precision'],1),
|
880 |
-
round(ko_deplot_RMS['table_datapoints_recall'],1),
|
881 |
-
round(ko_deplot_RMS['table_datapoints_f1'],1)
|
882 |
-
]
|
883 |
-
})
|
884 |
-
unichart_score_table=pd.DataFrame({
|
885 |
-
'category': ['precision', 'recall', 'f1'],
|
886 |
-
'value': [
|
887 |
-
round(unichart_RMS['table_datapoints_precision'],1),
|
888 |
-
round(unichart_RMS['table_datapoints_recall'],1),
|
889 |
-
round(unichart_RMS['table_datapoints_f1'],1)
|
890 |
-
]
|
891 |
-
})
|
892 |
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
return gr.DataFrame(styled_ko_deplot_table,label=ko_deplot_generated_title+"(VAIV_DePlot μΆλ‘ κ²°κ³Ό)") ,None,gr.DataFrame(styled_unichart_table,label=unichart_generated_title+"(VAIV_UniChart μΆλ‘ κ²°κ³Ό)"),gr.DataFrame(ko_deplot_label_table,label=ko_deplot_label_title+"(VAIV_DePlot μ λ΅ ν
μ΄λΈ)"),None,gr.DataFrame(unichart_label_table,label=unichart_label_title+"(VAIV_UniChart μ λ΅ ν
μ΄λΈ)"),ko_deplot_score_table,None,unichart_score_table,None,None,0
|
898 |
-
else:
|
899 |
-
return gr.DataFrame(ko_deplot_table,label=ko_deplot_generated_title+"(VAIV_DePlot μΆλ‘ κ²°κ³Ό)"),None,gr.DataFrame(unichart_table,label=unichart_generated_title+"(VAIV_UniChart μΆλ‘ κ²°κ³Ό)"),None,None,None,None,None,None,None,None,0
|
900 |
-
def inference(mode,image_uploader,file_uploader):
|
901 |
-
if(mode=="μ΄λ―Έμ§ μ
λ‘λ"):
|
902 |
-
ko_deplot_table, aihub_deplot_table, unichart_table, ko_deplot_label_table,aihub_deplot_label_table,unichart_label_table,ko_deplot_score_table, aihub_deplot_score_table,unichart_score_table,ko_deplot_generated_txt,unichart_generated_txt,flag= real_time_check(image_uploader)
|
903 |
if flag==1:
|
904 |
-
return
|
905 |
else:
|
906 |
-
return
|
907 |
else:
|
908 |
-
|
909 |
if flag==1:
|
910 |
-
return
|
911 |
else:
|
912 |
-
return
|
913 |
-
|
914 |
-
|
915 |
-
return gr.update(visible=True),gr.update(visible=False),gr.State("image_upload"),gr.update(visible=False),gr.update(visible=False),gr.File("./new_top_20_percent_images.txt"),"high score μ°¨νΈ"
|
916 |
-
elif selector == "νμΌ μ
λ‘λ":
|
917 |
-
return gr.update(visible=False),gr.update(visible=True),gr.State("file_upload"), gr.update(visible=True),gr.update(visible=True),gr.File("./new_top_20_percent_images.txt"),"high score μ°¨νΈ"
|
918 |
-
|
919 |
-
def file_selector(selector):
|
920 |
-
if selector == "low score μ°¨νΈ":
|
921 |
-
return gr.File("./new_bottom_20_percent_images.txt"),"μ 체"
|
922 |
-
elif selector == "high score μ°¨νΈ":
|
923 |
-
return gr.File("./new_top_20_percent_images.txt"),"μ 체"
|
924 |
-
'''
|
925 |
-
def update_results(model_type):
|
926 |
-
if "ko_deplot" == model_type:
|
927 |
-
return gr.update(visible=True),gr.update(visible=True),gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=False),gr.update(visible=False)
|
928 |
-
elif "aihub_deplot" == model_type:
|
929 |
-
return gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=True),gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=False)
|
930 |
-
elif "unichart"==model_type:
|
931 |
-
return gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=True),gr.update(visible=False),gr.update(visible=False),gr.update(visible=True)
|
932 |
-
else:
|
933 |
-
return gr.update(visible=True), gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True)
|
934 |
-
'''
|
935 |
-
|
936 |
-
def update_results(selected_models):
|
937 |
# Create a visibility list initialized to False for all components
|
938 |
-
visibility = [False] *
|
939 |
-
|
940 |
# Update visibility based on the selected models
|
941 |
if "VAIV_DePlot" in selected_models:
|
942 |
-
visibility[
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
visibility[
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
visibility[5] = True # unichart_score_table
|
954 |
-
visibility[8] = True # unichart_label_table
|
955 |
-
|
956 |
if "all" in selected_models:
|
957 |
-
visibility[
|
958 |
-
visibility[
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
|
|
964 |
# Return gr.update for each component with the corresponding visibility status
|
965 |
return tuple(gr.update(visible=v) for v in visibility)
|
966 |
|
|
|
|
|
|
|
|
|
|
|
967 |
|
968 |
def display_image(image_file):
|
969 |
image=Image.open(image_file)
|
970 |
return image, os.path.basename(image_file)
|
971 |
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
if
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
elif chart_type=="λμ κ°λ‘ λ§λν":
|
987 |
-
filtered_lines = [line for line in lines if "_horizontal bar_accumulation" in line]
|
988 |
-
elif chart_type=="100% κΈ°μ€ λμ κ°λ‘ λ§λν":
|
989 |
-
filtered_lines = [line for line in lines if "_horizontal bar_100per accumulation" in line]
|
990 |
-
elif chart_type=="μΌλ° μΈλ‘ λ§λν":
|
991 |
-
filtered_lines = [line for line in lines if "_vertical bar_standard" in line]
|
992 |
-
elif chart_type=="λμ μΈλ‘ λ§λν":
|
993 |
-
filtered_lines = [line for line in lines if "_vertical bar_accumulation" in line]
|
994 |
-
elif chart_type=="100% κΈ°μ€ λμ μΈλ‘ λ§λν":
|
995 |
-
filtered_lines = [line for line in lines if "_vertical bar_100per accumulation" in line]
|
996 |
-
elif chart_type=="μ ν":
|
997 |
-
filtered_lines = [line for line in lines if "_line_standard" in line]
|
998 |
-
elif chart_type=="μν":
|
999 |
-
filtered_lines = [line for line in lines if "_pie_standard" in line]
|
1000 |
-
elif chart_type=="κΈ°ν λ°©μ¬ν":
|
1001 |
-
filtered_lines = [line for line in lines if "_etc_radial" in line]
|
1002 |
-
elif chart_type=="κΈ°ν νΌν©ν":
|
1003 |
-
filtered_lines = [line for line in lines if "_etc_mix" in line]
|
1004 |
-
# μλ‘μ΄ νμΌμ κΈ°λ‘
|
1005 |
-
new_file_path = "./filtered_chart_images.txt"
|
1006 |
-
with open(new_file_path, 'w', encoding='utf-8') as file:
|
1007 |
-
file.writelines(filtered_lines)
|
1008 |
-
|
1009 |
-
return new_file_path
|
1010 |
|
1011 |
-
def
|
1012 |
-
|
1013 |
-
|
1014 |
-
|
1015 |
-
|
1016 |
-
|
1017 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1018 |
|
1019 |
css = """
|
1020 |
.dataframe-class {
|
1021 |
-
height: 300px; /* λμ΄λ₯Ό κ³ μ */
|
1022 |
overflow-y: auto !important; /* μ€ν¬λ‘€μ κ°λ₯νκ² */
|
|
|
1023 |
}
|
1024 |
"""
|
1025 |
|
1026 |
with gr.Blocks(css=css) as iface:
|
1027 |
-
|
|
|
|
|
1028 |
with gr.Row():
|
1029 |
with gr.Column():
|
1030 |
-
|
1031 |
-
|
1032 |
-
|
1033 |
-
|
1034 |
-
|
1035 |
-
|
1036 |
-
# μ΄λ―Έμ§μ νμΌ μ
λ‘λ μ»΄ν¬λνΈ (μ΄κΈ°μλ μ¨κΉ μν)
|
1037 |
-
# global image_uploader,file_uploader
|
1038 |
-
image_uploader= gr.File(file_count="single",file_types=["image"],visible=True)
|
1039 |
-
file_uploader= gr.File(file_count="single", file_types=[".txt"], visible=False)
|
1040 |
-
file_upload_option=gr.Radio(choices=["low score μ°¨νΈ","high score μ°¨νΈ"],label="νμΌ μ
λ‘λ μ΅μ
",visible=False)
|
1041 |
-
chart_type = gr.Dropdown(["μΌλ° κ°λ‘ λ§λν","λμ κ°λ‘ λ§λν","100% κΈ°μ€ λμ κ°λ‘ λ§λν", "μΌλ° μΈλ‘ λ§λν","λμ μΈλ‘ λ§λν","100% κΈ°μ€ λμ μΈλ‘ λ§λν","μ ν", "μν", "κΈ°ν λ°©μ¬ν", "κΈ°ν νΌν©ν", "μ 체"], label="Chart Type", value="all")
|
1042 |
-
model_type=gr.Dropdown(["VAIV_DePlot","VAIV_UniChart","all"],value="VAIV_DePlot",label="model",multiselect=True)
|
1043 |
-
image_displayer=gr.Image(visible=True)
|
1044 |
with gr.Row():
|
1045 |
-
|
1046 |
-
next_button=gr.Button("λ€μ")
|
1047 |
-
|
1048 |
-
#image_button.click(interface_selector, inputs=gr.State("μ΄λ―Έμ§ μ
λ‘λ"), outputs=[image_uploader,file_uploader,mode,mode_label,image_name])
|
1049 |
-
#file_button.click(interface_selector, inputs=gr.State("νμΌ μ
λ‘λ"), outputs=[image_uploader, file_uploader,mode,mode_label,image_name])
|
1050 |
-
inference_button=gr.Button("μΆλ‘ ")
|
1051 |
-
with gr.Column():
|
1052 |
-
ko_deplot_generated_table=gr.DataFrame(visible=True,label="VAIV_DePlot μΆλ‘ κ²°κ³Ό",elem_classes="dataframe-class")
|
1053 |
-
aihub_deplot_generated_table=gr.DataFrame(visible=False,label="aihub-deplot μΆλ‘ κ²°κ³Ό",elem_classes="dataframe-class")
|
1054 |
-
unichart_generated_table=gr.DataFrame(visible=False,label="VAIV_UniChart μΆλ‘ κ²°κ³Ό",elem_classes="dataframe-class")
|
1055 |
-
ko_deplot_generated_txt=gr.Text(visible=False,label="VAIV_DePlot μΆλ‘ κ²°κ³Ό")
|
1056 |
-
unichart_generated_txt=gr.Text(visible=False,label="VAIV_UniChart μΆλ‘ κ²°κ³Ό")
|
1057 |
-
with gr.Column():
|
1058 |
-
ko_deplot_label_table=gr.DataFrame(visible=True,label="VAIV_DePlot μ λ΅ν
μ΄λΈ",elem_classes="dataframe-class")
|
1059 |
-
aihub_deplot_label_table=gr.DataFrame(visible=False,label="aihub-deplot μ λ΅ν
μ΄λΈ",elem_classes="dataframe-class")
|
1060 |
-
unichart_label_table=gr.DataFrame(visible=False,label="VAIV_UniChart μ λ΅ν
μ΄λΈ",elem_classes="dataframe-class")
|
1061 |
with gr.Column():
|
1062 |
-
|
1063 |
-
|
1064 |
-
|
1065 |
-
|
1066 |
-
|
1067 |
-
|
1068 |
-
|
1069 |
-
|
1070 |
-
|
1071 |
-
upload_option.change(
|
1072 |
-
interface_selector,
|
1073 |
-
inputs=[upload_option],
|
1074 |
-
outputs=[image_uploader, file_uploader, mode, image_name,file_upload_option,file_uploader,file_upload_option]
|
1075 |
-
)
|
1076 |
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1081 |
)
|
1082 |
|
1083 |
-
chart_type.change(handle_chart_type_change, inputs=[chart_type,file_uploader],outputs=[image_displayer,image_name])
|
1084 |
image_uploader.upload(display_image,inputs=[image_uploader],outputs=[image_displayer,image_name])
|
1085 |
-
|
1086 |
-
|
1087 |
-
next_button.click(next_image, outputs=[image_displayer,image_name,
|
1088 |
-
inference_button.click(inference,inputs=[
|
1089 |
|
1090 |
-
if __name__ == "__main__":
|
1091 |
-
|
1092 |
-
sys.stdout.flush() # stdout λ²νΌλ₯Ό λΉμλλ€.
|
1093 |
-
iface.launch(share=True)
|
1094 |
-
#iface.launch(share=False,server_name="115.145.230.14",server_port=8080)
|
1095 |
-
time.sleep(2) # Gradio URLμ΄ μΆλ ₯λ λκΉμ§ μ μ κΈ°λ€λ¦½λλ€.
|
1096 |
-
sys.stdout.flush() # λ€μ stdout λ²νΌλ₯Ό λΉμλλ€.
|
1097 |
-
# Gradioκ° μ 곡νλ URLsμ νμΌμ κΈ°λ‘ν©λλ€.
|
1098 |
-
with open("gradio_url.log", "w") as f:
|
1099 |
-
print(iface.local_url, file=f)
|
1100 |
-
print(iface.share_url, file=f)
|
|
|
20 |
import logging
|
21 |
import subprocess
|
22 |
import spaces
|
23 |
+
import openai
|
24 |
+
import base64
|
25 |
+
from io import StringIO
|
26 |
|
27 |
# Git LFS pull λͺ
λ Ήμ΄ μ€ν
|
28 |
result = subprocess.run(['git', 'lfs', 'pull'], capture_output=True, text=True)
|
|
|
39 |
warnings.filterwarnings('ignore')
|
40 |
MAX_PATCHES = 512
|
41 |
# Load the models and processor
|
|
|
42 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
|
44 |
# Paths to the models
|
45 |
+
ko_deplot_model_path = './deplot_model_ver_24.11.21_korean_only(exclude NUUA)_epoch1.bin'
|
|
|
|
|
46 |
|
47 |
# Load first model ko-deplot
|
|
|
48 |
def load_model1():
|
49 |
processor1 = Pix2StructProcessor.from_pretrained('nuua/ko-deplot')
|
50 |
model1 = Pix2StructForConditionalGeneration.from_pretrained('nuua/ko-deplot')
|
51 |
model1.load_state_dict(torch.load(ko_deplot_model_path, map_location="cpu"))
|
52 |
model1.to(torch.device("cuda"))
|
53 |
+
return processor1, model1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
processor1, model1 = load_model1()
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# Function to format output
|
58 |
def format_output(prediction):
|
59 |
return prediction.replace('<0x0A>', '\n')
|
60 |
|
61 |
+
# First model prediction: ko-deplot
|
|
|
62 |
def predict_model1(image):
|
63 |
images = [image]
|
64 |
inputs = processor1(images=images, text="What is the title of the chart", return_tensors="pt", padding=True)
|
|
|
72 |
formatted_output = format_output(outputs[0])
|
73 |
return formatted_output
|
74 |
|
75 |
+
# Set your OpenAI API key
|
76 |
+
openai.api_key = "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"
|
77 |
+
|
78 |
+
# Function to encode the image as base64
|
79 |
+
def encode_image(image_path):
|
80 |
+
with open(image_path, "rb") as image_file:
|
81 |
+
return base64.b64encode(image_file.read()).decode("utf-8")
|
82 |
+
|
83 |
+
# Second model prediction: gpt-4o-mini
|
84 |
+
def predict_model2(image):
|
85 |
+
# Encode the uploaded image to base64
|
86 |
+
image_data = encode_image(image)
|
87 |
+
|
88 |
+
# Prepare the request content
|
89 |
+
response = openai.ChatCompletion.create(
|
90 |
+
model="gpt-4o-mini",
|
91 |
+
messages=[
|
92 |
+
{
|
93 |
+
"role": "user",
|
94 |
+
"content": [
|
95 |
+
{
|
96 |
+
"type": "text",
|
97 |
+
"text": "please extract chart title and chart data manually and present them as a table. you should only provide title and table without adding any additional comments such as **Chart Title:** ."
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"type": "image_url",
|
101 |
+
"image_url": {
|
102 |
+
"url": f"data:image/jpeg;base64,{image_data}"
|
103 |
+
}
|
104 |
+
}
|
105 |
+
]
|
106 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
]
|
108 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
# Return the table data from the response
|
111 |
+
return response.choices[0]["message"]["content"]
|
|
|
|
|
|
|
112 |
|
113 |
+
def ko_deplot_convert_to_dataframe(label_table_str): #function that converts text generated by ko-deplot to pandas dataframe
|
114 |
+
lines = label_table_str.strip().split("\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
data=[]
|
116 |
+
title= lines[0].split(" | ")[1]
|
117 |
+
|
118 |
+
if(len(lines[1].split("|")) == len(lines[2].split("|"))):
|
119 |
+
headers=lines[1].split(" | ")
|
120 |
+
for line in lines[2:]:
|
121 |
+
data.append(line.split(" | "))
|
122 |
+
df = pd.DataFrame(data, columns=headers)
|
123 |
+
return df, title
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
else:
|
125 |
+
legend_row=lines[1].split("|")
|
126 |
+
legend_row.insert(0," ")
|
127 |
+
for line in lines[2:]:
|
128 |
+
data.append(line.split(" | "))
|
129 |
+
df = pd.DataFrame(data, columns=legend_row)
|
130 |
+
return df, title
|
131 |
+
|
132 |
+
def gpt_convert_to_dataframe(table_text): #function that converts text generated by gpt to pandas dataframe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
try:
|
134 |
+
# Split the text into lines
|
135 |
+
lines = table_text.strip().split("\n")
|
136 |
+
title=lines[0]
|
137 |
+
lines.pop(1)
|
138 |
+
lines.pop(2)
|
139 |
+
# Process the remaining lines to create the DataFrame
|
140 |
+
data = [line.split("|")[1:-1] for line in lines[1:]] # Split by | and remove empty first/last items
|
141 |
+
dataframe = pd.DataFrame(data[1:], columns=[col.strip() for col in data[0]]) # Use the first row as headers
|
142 |
+
|
143 |
+
return dataframe, title
|
144 |
except Exception as e:
|
145 |
+
return f"Error converting table to DataFrame: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
def real_time_check(image_file):
|
|
|
|
|
|
|
148 |
image = Image.open(image_file)
|
149 |
+
ko_deplot_generated_txt = predict_model1(image)
|
150 |
+
parts=ko_deplot_generated_txt.split("\n")
|
|
|
151 |
del parts[-1]
|
152 |
+
ko_deplot_generated_txt="\n".join(parts)
|
153 |
+
gpt_generated_txt=predict_model2(image_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
try:
|
155 |
+
ko_deplot_generated_df, ko_deplot_generated_title=ko_deplot_convert_to_dataframe(ko_deplot_generated_txt)
|
156 |
+
gpt_generated_df, gpt_generated_title=gpt_convert_to_dataframe(gpt_generated_txt)
|
157 |
+
return gr.DataFrame(ko_deplot_generated_df, label= ko_deplot_generated_title), gr.DataFrame(gpt_generated_df, label= gpt_generated_title), None,None,0
|
158 |
except Exception as e:
|
159 |
+
return None,None,ko_deplot_generated_txt,gpt_generated_txt,1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
flag = 0 #flag to check whether exception happens or not. if flag is 1, it means that exception(generated txt cannot be converted to pandas dataframe) happens.
|
162 |
+
def inference(image_uploader,mode_selector):
|
163 |
+
if(mode_selector=="νμΌ μ
λ‘λ"):
|
164 |
+
ko_deplot_generated_df, gpt_generated_df,ko_deplot_generated_txt, gpt_generated_txt, flag= real_time_check(image_uploader)
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
if flag==1:
|
166 |
+
return gr.update(visible=False), gr.update(visible=False), gr.Text(ko_deplot_generated_txt,visible=True),gr.Text(gpt_generated_txt,visible=True)
|
167 |
else:
|
168 |
+
return ko_deplot_generated_df, gpt_generated_df, gr.update(visible=False),gr.update(visible=False)
|
169 |
else:
|
170 |
+
ko_deplot_generated_df, gpt_generated_df,ko_deplot_generated_txt, gpt_generated_txt, flag= real_time_check(image_files[current_image_index])
|
171 |
if flag==1:
|
172 |
+
return gr.update(visible=False), gr.update(visible=False), gr.Text(ko_deplot_generated_txt,visible=True),gr.Text(gpt_generated_txt,visible=True)
|
173 |
else:
|
174 |
+
return ko_deplot_generated_df, gpt_generated_df, gr.update(visible=False),gr.update(visible=False)
|
175 |
+
|
176 |
+
def toggle_model(selected_models,flag):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
# Create a visibility list initialized to False for all components
|
178 |
+
visibility = [False] * 6
|
|
|
179 |
# Update visibility based on the selected models
|
180 |
if "VAIV_DePlot" in selected_models:
|
181 |
+
visibility[4]= True
|
182 |
+
if flag:
|
183 |
+
visibility[2]= True
|
184 |
+
else:
|
185 |
+
visibility[0]= True
|
186 |
+
if "gpt-4o-mini" in selected_models:
|
187 |
+
visibility[5]= True
|
188 |
+
if flag:
|
189 |
+
visibility[3]= True
|
190 |
+
else:
|
191 |
+
visibility[1]= True
|
|
|
|
|
|
|
192 |
if "all" in selected_models:
|
193 |
+
visibility[4]=True
|
194 |
+
visibility[5]=True
|
195 |
+
if flag:
|
196 |
+
visibility[2]= True
|
197 |
+
visibility[3]= True
|
198 |
+
else:
|
199 |
+
visibility[0]= True
|
200 |
+
visibility[1]= True
|
201 |
# Return gr.update for each component with the corresponding visibility status
|
202 |
return tuple(gr.update(visible=v) for v in visibility)
|
203 |
|
204 |
+
def toggle_mode(mode):
|
205 |
+
if mode == "νμΌ μ
λ‘λ":
|
206 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
207 |
+
else:
|
208 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
209 |
|
210 |
def display_image(image_file):
|
211 |
image=Image.open(image_file)
|
212 |
return image, os.path.basename(image_file)
|
213 |
|
214 |
+
# Function to display the images in the folder sequentially
|
215 |
+
image_files = []
|
216 |
+
current_image_index = 0
|
217 |
+
image_files_cnt=0
|
218 |
+
|
219 |
+
def display_folder_images(image_file_path_list):
|
220 |
+
global image_files, current_image_index,image_files_cnt
|
221 |
+
image_files = image_file_path_list
|
222 |
+
image_files_cnt=len(image_files)
|
223 |
+
current_image_index = 0
|
224 |
+
if image_files:
|
225 |
+
return Image.open(image_files[current_image_index]), os.path.basename(image_files[current_image_index]), gr.update(interactive=False), gr.update(interactive=True)
|
226 |
+
return None, "No images found"
|
227 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
+
def next_image():
|
230 |
+
global current_image_index
|
231 |
+
if image_files:
|
232 |
+
current_image_index = (current_image_index + 1)
|
233 |
+
prev_disabled = current_image_index == 0
|
234 |
+
next_disabled = current_image_index == (len(image_files) - 1)
|
235 |
+
return Image.open(image_files[current_image_index]), os.path.basename(image_files[current_image_index]), gr.update(interactive=not prev_disabled), gr.update(interactive= not next_disabled)
|
236 |
+
return None, "No images found"
|
237 |
+
|
238 |
+
def prev_image():
|
239 |
+
global current_image_index
|
240 |
+
if image_files:
|
241 |
+
current_image_index = (current_image_index - 1)
|
242 |
+
prev_disabled = current_image_index == 0
|
243 |
+
next_disabled = current_image_index == (len(image_files) - 1)
|
244 |
+
return Image.open(image_files[current_image_index]), os.path.basename(image_files[current_image_index]), gr.update(interactive=not prev_disabled), gr.update(interactive= not next_disabled)
|
245 |
+
return None, "No images found"
|
246 |
|
247 |
css = """
|
248 |
.dataframe-class {
|
|
|
249 |
overflow-y: auto !important; /* μ€ν¬λ‘€μ κ°λ₯νκ² */
|
250 |
+
height: 250px
|
251 |
}
|
252 |
"""
|
253 |
|
254 |
with gr.Blocks(css=css) as iface:
|
255 |
+
with gr.Row():
|
256 |
+
gr.Markdown("<h1 style='text-align: center;'>SKKU-VAIV Automatic chart understanding evaluation tool</h1>")
|
257 |
+
gr.Markdown("<hr style='border: 1px solid #ddd;' />")
|
258 |
with gr.Row():
|
259 |
with gr.Column():
|
260 |
+
mode_selector = gr.Radio(["νμΌ μ
λ‘λ", "ν΄λ μ
λ‘λ"], label="Upload Mode", value="νμΌ μ
λ‘λ")
|
261 |
+
image_uploader = gr.File(file_count="single", file_types=["image"], visible=True)
|
262 |
+
folder_uploader = gr.File(file_count="directory", file_types=["image"], visible=False, height=50)
|
263 |
+
model_type=gr.Dropdown(["VAIV_DePlot","gpt-4o-mini","all"],value="VAIV_DePlot",label="model",multiselect=True)
|
264 |
+
image_displayer = gr.Image(visible=True)
|
265 |
+
image_name = gr.Text("", visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
with gr.Row():
|
267 |
+
prev_button = gr.Button("μ΄μ ", visible=False, interactive=False)
|
268 |
+
next_button = gr.Button("λ€μ", visible=False, interactive=False)
|
269 |
+
inference_button = gr.Button("μΆλ‘ ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
with gr.Column():
|
271 |
+
md1 = gr.Markdown("# VAIV_DePlot Inference Result")
|
272 |
+
ko_deplot_generated_df = gr.DataFrame(visible=True, elem_classes="dataframe-class")
|
273 |
+
ko_deplot_generated_txt = gr.Text(visible=False)
|
274 |
+
with gr.Column():
|
275 |
+
md2 = gr.Markdown("# gpt-4o-mini Inference Result", visible=False)
|
276 |
+
gpt_generated_df = gr.DataFrame(visible=False, elem_classes="dataframe-class")
|
277 |
+
gpt_generated_txt = gr.Text(visible=False)
|
278 |
+
#label_df = gr.DataFrame(visible=False, label="Ground Truth Table", elem_classes="dataframe-class",scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
+
model_type.change(
|
281 |
+
toggle_model,
|
282 |
+
inputs=[model_type, gr.State(flag)],
|
283 |
+
outputs=[ko_deplot_generated_df,gpt_generated_df,ko_deplot_generated_txt,gpt_generated_txt,md1,md2]
|
284 |
+
)
|
285 |
+
|
286 |
+
mode_selector.change(
|
287 |
+
toggle_mode,
|
288 |
+
inputs=[mode_selector],
|
289 |
+
outputs=[image_uploader, folder_uploader, prev_button, next_button]
|
290 |
)
|
291 |
|
|
|
292 |
image_uploader.upload(display_image,inputs=[image_uploader],outputs=[image_displayer,image_name])
|
293 |
+
folder_uploader.upload(display_folder_images, inputs=[folder_uploader], outputs=[image_displayer, image_name, prev_button, next_button])
|
294 |
+
prev_button.click(prev_image, outputs=[image_displayer, image_name, prev_button, next_button])
|
295 |
+
next_button.click(next_image, outputs=[image_displayer, image_name, prev_button, next_button])
|
296 |
+
inference_button.click(inference,inputs=[image_uploader,mode_selector],outputs=[ko_deplot_generated_df, gpt_generated_df, ko_deplot_generated_txt, gpt_generated_txt])
|
297 |
|
298 |
+
if __name__ == "__main__":
|
299 |
+
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|