StockSavvyFinal / tools /chart_expert1.py
sanjeevl10
First Check-in
1a2a035
raw
history blame
5.29 kB
from pydantic.v1 import BaseModel, Field
from langchain.tools import BaseTool
from typing import Optional, Type
from langchain.tools import StructuredTool
import yfinance as yf
from typing import List
from datetime import datetime,timedelta
import matplotlib.pyplot as plt
import chainlit as cl
import plotly.graph_objects as go
import pandas as pd
import yfinance as yf
from plotly.subplots import make_subplots
import chainlit as cl
class chart_expert_tools():
def plot_macd(stockticker, days_ago):
"""Upload accurate data to accurate dates from yahoo finance.
Receive data on the last week and give them to forecasting experts.
Receive data on the last 90 days and give them to visualization expert."""
ticker = yf.Ticker(stockticker)
end_date = datetime.now()
start_date = end_date - timedelta(days=days_ago)
start_date = start_date.strftime('%Y-%m-%d')
end_date = end_date.strftime('%Y-%m-%d')
historical_data = ticker.history(start=start_date, end=end_date)
fast_period=12
slow_period=26
signal_period=9
df=historical_data[['Close','Open','High','Low']]
df['EMA_fast'] = df['Close'].ewm(span=fast_period, adjust=False).mean()
df['EMA_slow'] = df['Close'].ewm(span=slow_period, adjust=False).mean()
df['MACD'] = df['EMA_fast'] - df['EMA_slow']
df['Signal_Line'] = df['MACD'].ewm(span=signal_period, adjust=False).mean()
df['MACD_Histogram'] = df['MACD'] - df['Signal_Line']
# Create Figure
fig = make_subplots(rows=2, cols=1, shared_xaxes=True, row_heights=[0.7, 0.3],
vertical_spacing=0.15, # Adjust vertical spacing between subplots
subplot_titles=("Candlestick Chart", "MACD")) # Add subplot titles
# Subplot 1: Plot candlestick chart
fig.add_trace(go.Candlestick(
x=df.index,
open=df['Open'],
high=df['High'],
low=df['Low'],
close=df['Close'],
increasing_line_color='#00cc96', # Green for increasing
decreasing_line_color='#ff3e3e', # Red for decreasing
showlegend=False
), row=1, col=1) # Specify row and column indices
# Subplot 2: Plot MACD
fig.add_trace(
go.Scatter(
x=df.index,
y=df['MACD'],
mode='lines',
name='MACD',
line=dict(color='blue')
),
row=2, col=1
)
fig.add_trace(
go.Scatter(
x=df.index,
y=df['Signal_Line'],
mode='lines',
name='Signal Line',
line=dict(color='red')
),
row=2, col=1
)
# Plot MACD Histogram with different colors for positive and negative values
histogram_colors = ['green' if val >= 0 else 'red' for val in df['MACD_Histogram']]
fig.add_trace(
go.Bar(
x=df.index,
y=df['MACD_Histogram'],
name='MACD Histogram',
marker_color=histogram_colors
),
row=2, col=1
)
# Update layout with zoom and pan tools enabled
layout = go.Layout(
title='MSFT Candlestick Chart and MACD Subplots',
title_font=dict(size=25), # Adjust title font size
plot_bgcolor='#f2f2f2', # Light gray background
height=800,
width=1500,
xaxis_rangeslider=dict(visible=True, thickness=0.03),
)
# Update the layout of the entire figure
fig.update_layout(layout)
fig.update_yaxes(fixedrange=False, row=1, col=1)
fig.update_yaxes(fixedrange=True, row=2, col=1)
fig.update_xaxes(type='category', row=1, col=1)
fig.update_xaxes(type='category', nticks=10, row=2, col=1)
fig.show()
# elements=[
# cl.Pyplot(name="plot", figure=fig, display="inline"),
# ]
# cl.Message(
# content="Ask me anything about stocks.",
# elements=elements,
# ).send()
# return elements
# class PlotMACDInput(BaseModel):
# """Input for Stock ticker check."""
# stockticker: str = Field(..., description="Ticker symbol for stock or index")
# days_ago: int = Field(..., description="Int number of days to look back")
# class PlotMACDTool(BaseTool):
# name = "plot_macd"
# description = "Useful for creating beautiful candle stick plot for MACD for a stock price."
# def _run(self, df: List[float]):
# historical_prices = plot_macd(df)
# return {"historical prices": historical_prices}
# def _arun(self, df: List[float]):
# raise NotImplementedError("This tool does not support async")
# args_schema: Optional[Type[BaseModel]] = PlotMACDInput
# tools_chart_expert = [
# StructuredTool.from_function(
# func=PlotMACDTool,
# args_schema=PlotMACDInput,
# description="Plot MACD.",
# ),
# ]
#return tools_chart_expert