Sanshruth commited on
Commit
5b5bb73
1 Parent(s): 9e395a3

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +73 -0
  2. requirements.txt +4 -0
  3. yolov5n6.pt +3 -0
app.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ultralytics import YOLO
2
+ import cv2
3
+ import numpy as np
4
+ import gradio as gr
5
+ import torch
6
+
7
+ # Load YOLOv5n6 model
8
+ model = YOLO('yolov5n6.pt')
9
+
10
+ # Set the confidence threshold and IOU
11
+ model.conf = 0.25 # confidence threshold
12
+ model.iou = 0.45 # IOU threshold
13
+ model.agnostic = False
14
+ model.multi_label = False
15
+ model.max_det = 100 # max number of detections
16
+
17
+ # Low-resolution for inference
18
+ LOW_RES = (320, 180)
19
+
20
+ def detect_and_draw(frame):
21
+ # Create low-res copy
22
+ low_res_frame = cv2.resize(frame, LOW_RES)
23
+
24
+ # Perform detection
25
+ results = model(low_res_frame, verbose=False)
26
+
27
+ # Scale bounding boxes
28
+ scale_x = frame.shape[1] / LOW_RES[0]
29
+ scale_y = frame.shape[0] / LOW_RES[1]
30
+
31
+ # Draw bounding boxes on high-res frame
32
+ for detection in results[0].boxes.data:
33
+ x1, y1, x2, y2, conf, cls = detection
34
+ x1, y1, x2, y2 = int(x1*scale_x), int(y1*scale_y), int(x2*scale_x), int(y2*scale_y)
35
+ label = f"{results[0].names[int(cls)]} {conf:.2f}"
36
+ cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
37
+ cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
38
+
39
+ return frame
40
+
41
+ # Define your stream URL
42
+ stream_url = "https://edge01.london.nginx.hdontap.com/hosb5/ng_showcase-coke_bottle-street_fixed.stream/chunklist_w464099566.m3u8"
43
+
44
+ def process_stream():
45
+ cap = cv2.VideoCapture(stream_url)
46
+ frame_count = 0
47
+ while cap.isOpened():
48
+ ret, frame = cap.read()
49
+ if not ret:
50
+ break
51
+
52
+ frame_count += 3
53
+ if frame_count % 30 == 0:
54
+ result = detect_and_draw(frame)
55
+ result_rgb = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
56
+ yield result_rgb
57
+
58
+ cap.release()
59
+
60
+ iface = gr.Interface(
61
+ fn=process_stream,
62
+ inputs=None,
63
+ outputs="image",
64
+ live=True,
65
+ title="Fast Real-time Object Detection with High-Res Output",
66
+ description="Live stream processed with YOLOv5n6 on low-res frames, results drawn on high-res frames."
67
+ )
68
+
69
+ if __name__ == "__main__":
70
+ if torch.cuda.is_available():
71
+ model.to('cuda')
72
+ #iface.queue()
73
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ultralytics
2
+ opencv-python
3
+ gradio
4
+ torch
yolov5n6.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:496c05a2b991da15acc6c4408c63da287f2513a46c6756618776d4dd71170781
3
+ size 7190229