Upload 3 files
Browse files- app.py +73 -0
- requirements.txt +4 -0
- yolov5n6.pt +3 -0
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Load YOLOv5n6 model
|
8 |
+
model = YOLO('yolov5n6.pt')
|
9 |
+
|
10 |
+
# Set the confidence threshold and IOU
|
11 |
+
model.conf = 0.25 # confidence threshold
|
12 |
+
model.iou = 0.45 # IOU threshold
|
13 |
+
model.agnostic = False
|
14 |
+
model.multi_label = False
|
15 |
+
model.max_det = 100 # max number of detections
|
16 |
+
|
17 |
+
# Low-resolution for inference
|
18 |
+
LOW_RES = (320, 180)
|
19 |
+
|
20 |
+
def detect_and_draw(frame):
|
21 |
+
# Create low-res copy
|
22 |
+
low_res_frame = cv2.resize(frame, LOW_RES)
|
23 |
+
|
24 |
+
# Perform detection
|
25 |
+
results = model(low_res_frame, verbose=False)
|
26 |
+
|
27 |
+
# Scale bounding boxes
|
28 |
+
scale_x = frame.shape[1] / LOW_RES[0]
|
29 |
+
scale_y = frame.shape[0] / LOW_RES[1]
|
30 |
+
|
31 |
+
# Draw bounding boxes on high-res frame
|
32 |
+
for detection in results[0].boxes.data:
|
33 |
+
x1, y1, x2, y2, conf, cls = detection
|
34 |
+
x1, y1, x2, y2 = int(x1*scale_x), int(y1*scale_y), int(x2*scale_x), int(y2*scale_y)
|
35 |
+
label = f"{results[0].names[int(cls)]} {conf:.2f}"
|
36 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
37 |
+
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
38 |
+
|
39 |
+
return frame
|
40 |
+
|
41 |
+
# Define your stream URL
|
42 |
+
stream_url = "https://edge01.london.nginx.hdontap.com/hosb5/ng_showcase-coke_bottle-street_fixed.stream/chunklist_w464099566.m3u8"
|
43 |
+
|
44 |
+
def process_stream():
|
45 |
+
cap = cv2.VideoCapture(stream_url)
|
46 |
+
frame_count = 0
|
47 |
+
while cap.isOpened():
|
48 |
+
ret, frame = cap.read()
|
49 |
+
if not ret:
|
50 |
+
break
|
51 |
+
|
52 |
+
frame_count += 3
|
53 |
+
if frame_count % 30 == 0:
|
54 |
+
result = detect_and_draw(frame)
|
55 |
+
result_rgb = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
|
56 |
+
yield result_rgb
|
57 |
+
|
58 |
+
cap.release()
|
59 |
+
|
60 |
+
iface = gr.Interface(
|
61 |
+
fn=process_stream,
|
62 |
+
inputs=None,
|
63 |
+
outputs="image",
|
64 |
+
live=True,
|
65 |
+
title="Fast Real-time Object Detection with High-Res Output",
|
66 |
+
description="Live stream processed with YOLOv5n6 on low-res frames, results drawn on high-res frames."
|
67 |
+
)
|
68 |
+
|
69 |
+
if __name__ == "__main__":
|
70 |
+
if torch.cuda.is_available():
|
71 |
+
model.to('cuda')
|
72 |
+
#iface.queue()
|
73 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
opencv-python
|
3 |
+
gradio
|
4 |
+
torch
|
yolov5n6.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:496c05a2b991da15acc6c4408c63da287f2513a46c6756618776d4dd71170781
|
3 |
+
size 7190229
|