Spaces:
Running
Running
initial_commit
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import time
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
from tld.diffusion import DiffusionTransformer
|
7 |
+
from tld.configs import LTDConfig, DenoiserConfig, DenoiserLoad
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
# Image Generation Model Setup
|
12 |
+
denoiser_cfg = DenoiserConfig(
|
13 |
+
image_size=32,
|
14 |
+
noise_embed_dims=256,
|
15 |
+
patch_size=2,
|
16 |
+
embed_dim=768,
|
17 |
+
dropout=0,
|
18 |
+
n_layers=12,
|
19 |
+
text_emb_size=768
|
20 |
+
)
|
21 |
+
|
22 |
+
denoiser_load = DenoiserLoad(**{
|
23 |
+
'dtype': torch.float32,
|
24 |
+
'file_url': 'https://huggingface.co/apapiu/small_ldt/resolve/main/state_dict_378000.pth',
|
25 |
+
'local_filename': 'state_dict_378000.pth'
|
26 |
+
})
|
27 |
+
|
28 |
+
cfg = LTDConfig(denoiser_cfg=denoiser_cfg, denoiser_load=denoiser_load)
|
29 |
+
diffusion_transformer = DiffusionTransformer(cfg)
|
30 |
+
|
31 |
+
# Set PyTorch to use all available CPU cores
|
32 |
+
num_cores = os.cpu_count()
|
33 |
+
torch.set_num_threads(num_cores)
|
34 |
+
print(f"Using {num_cores} CPU cores.")
|
35 |
+
|
36 |
+
# Text Model Setup
|
37 |
+
model_name = 'mllmTeam/PhoneLM-1.5B-Instruct'
|
38 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='cpu', trust_remote_code=True)
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
40 |
+
|
41 |
+
def generate_text_response(question):
|
42 |
+
start_time = time.time()
|
43 |
+
prompt = [{"role": "user", "content": question}]
|
44 |
+
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
|
45 |
+
inp = tokenizer(input_text, return_tensors="pt")
|
46 |
+
inp = {k: v.to('cpu') for k, v in inp.items()}
|
47 |
+
out = model.generate(**inp, max_length=256, do_sample=True, temperature=0.7, top_p=0.7)
|
48 |
+
text = tokenizer.decode(out[0], skip_special_tokens=True)
|
49 |
+
text = text.split("\n")[-1]
|
50 |
+
end_time = time.time()
|
51 |
+
elapsed_time = end_time - start_time
|
52 |
+
return text
|
53 |
+
|
54 |
+
def generate_image(prompt, class_guidance=6, num_imgs=1, seed=11):
|
55 |
+
start_time = time.time()
|
56 |
+
try:
|
57 |
+
# Generate the image
|
58 |
+
out = diffusion_transformer.generate_image_from_text(
|
59 |
+
prompt=prompt,
|
60 |
+
class_guidance=class_guidance,
|
61 |
+
num_imgs=num_imgs,
|
62 |
+
seed=seed
|
63 |
+
)
|
64 |
+
|
65 |
+
# Convert to PIL Image if it's not already
|
66 |
+
if isinstance(out, torch.Tensor):
|
67 |
+
out = out.squeeze().permute(1, 2, 0).numpy()
|
68 |
+
|
69 |
+
# Ensure the image is in the right format for Gradio
|
70 |
+
if isinstance(out, np.ndarray):
|
71 |
+
# Normalize pixel values to 0-255 range
|
72 |
+
out = ((out - out.min()) * (1/(out.max() - out.min()) * 255)).astype('uint8')
|
73 |
+
out = Image.fromarray(out)
|
74 |
+
|
75 |
+
end_time = time.time()
|
76 |
+
print(f"Image generation time: {end_time - start_time:.2f} seconds")
|
77 |
+
return out
|
78 |
+
except Exception as e:
|
79 |
+
print(f"Image generation error: {e}")
|
80 |
+
return None
|
81 |
+
|
82 |
+
def chat_with_ai(message, history):
|
83 |
+
max_history_length = 1 # Adjust as needed
|
84 |
+
history = history[-max_history_length:]
|
85 |
+
if message.startswith('@imagine'):
|
86 |
+
# Extract prompt after '@imagine'
|
87 |
+
image_prompt = message.split('@imagine', 1)[1].strip()
|
88 |
+
image = generate_image(image_prompt)
|
89 |
+
|
90 |
+
if image:
|
91 |
+
return "", history, image
|
92 |
+
else:
|
93 |
+
return "", history + [[message, "Failed to generate image."]], None
|
94 |
+
else:
|
95 |
+
response = generate_text_response(message)
|
96 |
+
return response, history + [[message, response]], None
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
# Create Gradio interface
|
101 |
+
with gr.Blocks(title="BlazeChat Image Generator") as demo:
|
102 |
+
#################
|
103 |
+
gr.Markdown("# ⚡Fast CPU-Powered Chat & Image Generation")
|
104 |
+
gr.Markdown("Generate text and images using advanced AI models on CPU. Use `@imagine [prompt]` to create images or chat naturally.")
|
105 |
+
gr.Markdown("https://github.com/SanshruthR/CPU_BlazeChat")
|
106 |
+
####################
|
107 |
+
chatbot = gr.Chatbot()
|
108 |
+
msg = gr.Textbox(label="Enter your message")
|
109 |
+
####submit button
|
110 |
+
submit_button = gr.Button("Submit")
|
111 |
+
##########
|
112 |
+
clear = gr.Button("Clear")
|
113 |
+
img_output = gr.Image(label="Generated Image")
|
114 |
+
|
115 |
+
msg.submit(chat_with_ai, [msg, chatbot], [msg, chatbot, img_output])
|
116 |
+
|
117 |
+
####################binding with submit
|
118 |
+
submit_button.click(chat_with_ai, [msg, chatbot], [msg, chatbot, img_output])
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
###################
|
123 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
124 |
+
|
125 |
+
# Launch the demo
|
126 |
+
demo.launch(debug=True,ssr_mode=False)
|