Sapdmsql commited on
Commit
1f166b0
1 Parent(s): eff8f10

initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ pokemon_classification_model_xception_v2.keras filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ from tensorflow.keras.preprocessing import image
4
+
5
+ # Lade das gespeicherte Modell
6
+ model = tf.keras.models.load_model("pokemon_classification_model_xception_v2.keras")
7
+
8
+ # Setze die Bildabmessungen
9
+ img_height, img_width = 299, 299 # Eingabegröße für Xception
10
+
11
+ # Definiere eine Funktion zur Vorhersage und Rückgabe des Labels und der Wahrscheinlichkeit
12
+ def predict_label_and_probability(image_path):
13
+ # Lade das Bild und passe es an die Eingabegröße des Modells an
14
+ img = image.load_img(image_path, target_size=(img_height, img_width))
15
+ x = image.img_to_array(img)
16
+ x = np.expand_dims(x, axis=0)
17
+ x /= 255. # Skalieren der Bildpixel
18
+
19
+ # Vorhersage mit dem Modell
20
+ preds = model.predict(x)
21
+ class_idx = np.argmax(preds[0])
22
+
23
+ # Mappe Klassenindizes auf Klassennamen
24
+ class_labels = {0: 'Abra', 1: 'Butterfree', 2: 'Eevee'}
25
+ predicted_class = class_labels[class_idx]
26
+
27
+ # Gib das vorhergesagte Label und die Wahrscheinlichkeit zurück
28
+ probability = preds[0][class_idx]
29
+ return predicted_class, probability
30
+
31
+ # Streamlit App
32
+ st.title("Pokémon Classification")
33
+
34
+ uploaded_file = st.file_uploader("Choose a Pokémon image...", type="jpg")
35
+
36
+ if uploaded_file is not None:
37
+ # Zeige das hochgeladene Bild
38
+ st.image(uploaded_file, caption='Uploaded Pokémon Image.', use_column_width=True)
39
+
40
+ # Führe die Vorhersage durch und zeige das Ergebnis
41
+ label, probability = predict_label_and_probability(uploaded_file)
42
+ st.write("Prediction:", label)
43
+ st.write("Probability:", probability)
pokemon_classification_model_xception_v2.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c2b55f66e325b28ea57ff7580c0634eb1e7a6dc79f70fe6e0db8224b2272307
3
+ size 167750092
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ tensorflow