SarowarSaurav commited on
Commit
ba2ce75
·
verified ·
1 Parent(s): b8ca872

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -39
app.py CHANGED
@@ -1,55 +1,31 @@
1
  import gradio as gr
2
- from ultralytics import YOLO
3
  from PIL import Image
4
- import numpy as np
5
- import torch
6
 
7
- # Load the pre-trained YOLOv8s model from the Hugging Face repository
8
- model = YOLO('foduucom/plant-leaf-detection-and-classification')
 
9
 
10
  def identify_disease(image):
11
- # Convert the image to RGB if it's not
12
- if image.mode != 'RGB':
13
- image = image.convert('RGB')
14
 
15
- # Perform inference
16
- results = model(image)
17
 
18
- # Extract predictions
19
- predictions = results[0]
20
- boxes = predictions.boxes
21
- labels = boxes.cls.cpu().numpy()
22
- scores = boxes.conf.cpu().numpy()
23
- class_names = model.names
24
-
25
- # Annotate image with bounding boxes and labels
26
- annotated_image = np.array(image)
27
- for box, label, score in zip(boxes.xyxy.cpu().numpy(), labels, scores):
28
- x1, y1, x2, y2 = map(int, box)
29
- class_name = class_names[int(label)]
30
- confidence = f"{score * 100:.2f}%"
31
- annotated_image = cv2.rectangle(annotated_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
32
- annotated_image = cv2.putText(annotated_image, f"{class_name} {confidence}", (x1, y1 - 10),
33
- cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
34
-
35
- # Convert annotated image back to PIL format
36
- annotated_image = Image.fromarray(annotated_image)
37
-
38
- # Prepare results for display
39
- results_list = [{"Disease": class_names[int(label)], "Confidence": f"{score * 100:.2f}%"} for label, score in zip(labels, scores)]
40
-
41
- return annotated_image, results_list
42
 
43
  # Define Gradio interface
44
  interface = gr.Interface(
45
- fn=identify_disease,
46
  inputs=gr.inputs.Image(type="pil"),
47
  outputs=[
48
- gr.outputs.Image(type="pil", label="Annotated Image"),
49
- gr.outputs.Dataframe(headers=["Disease", "Confidence"], label="Predictions")
50
  ],
51
- title="Tobacco Plant Disease Identifier",
52
- description="Upload an image of a tobacco plant leaf, and this tool will identify the disease along with the confidence score."
53
  )
54
 
55
  # Launch the app
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
  from PIL import Image
 
 
4
 
5
+ # Load the Hugging Face image classification pipeline with EfficientNetB0
6
+ # This model is a general-purpose model for plant disease classification
7
+ classifier = pipeline("image-classification", model="nateraw/efficientnet-b0")
8
 
9
  def identify_disease(image):
10
+ # Use the classifier to predict the disease
11
+ predictions = classifier(image)
 
12
 
13
+ # Format the output to include disease name and confidence score
14
+ results = [{"Disease": pred["label"], "Confidence": f"{pred['score'] * 100:.2f}%"} for pred in predictions]
15
 
16
+ # Return the uploaded image along with the results
17
+ return image, results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  # Define Gradio interface
20
  interface = gr.Interface(
21
+ fn=identify_disease,
22
  inputs=gr.inputs.Image(type="pil"),
23
  outputs=[
24
+ gr.outputs.Image(type="pil", label="Uploaded Image"),
25
+ gr.outputs.Dataframe(type="pandas", label="Predictions")
26
  ],
27
+ title="Plant Disease Identifier",
28
+ description="Upload an image of a plant leaf, and this tool will identify the disease along with the confidence score."
29
  )
30
 
31
  # Launch the app