import gradio as gr from fastai.vision.all import * import skimage def label_func(x): return x.parent.name learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i] for i in range(len(labels)))} title = "MNIST" description = "Fast.ai Lesson 2" interpretation = 'default' enable_queue = True gr.Interface( fn = predict, inputs = gr.inputs.Image(shape= (512,512)), outputs = gr.outputs.Label(num_top_classes = 10), title = title, description = description, interpretation = interpretation, enable_queue = enable_queue ).launch()