Sasidhar commited on
Commit
3ee5fd7
·
1 Parent(s): ac0de5c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -3
app.py CHANGED
@@ -40,6 +40,10 @@ def init_ner_pipeline():
40
  pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
41
  return pipe
42
 
 
 
 
 
43
 
44
  def get_formatted_text_for_annotation(output):
45
  colour_map = {'Sex': '#5DD75D',
@@ -78,6 +82,7 @@ def get_formatted_text_for_annotation(output):
78
  pipeline_summarization = init_text_summarization_model()
79
  pipeline_zsl, template = init_zsl_topic_classification()
80
  pipeline_ner =init_ner_pipeline()
 
81
 
82
  st.header("Intelligent Document Automation")
83
 
@@ -98,13 +103,23 @@ if selected_menu == "Upload Document":
98
  elif selected_menu == "Extract Text":
99
  st.write(get_text_from_ocr_engine())
100
  elif selected_menu == "Summarize Document":
101
- st.write(get_text_from_ocr_engine())
 
 
 
 
 
102
  elif selected_menu == "Extract Entities":
103
  text = get_text_from_ocr_engine()
104
  output = pipeline_ner (text)
105
  entities_text =get_formatted_text_for_annotation(output)
106
  annotated_text(*entities_text)
107
 
108
-
109
  elif selected_menu == "Get Answers":
110
- st.write(get_text_from_ocr_engine())
 
 
 
 
 
 
 
40
  pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
41
  return pipe
42
 
43
+ @st.cache(allow_output_mutation = True)
44
+ def init_qa_pipeline():
45
+ question_answerer_pipe = pipeline("question-answering", model='distilbert-base-cased-distilled-squad')
46
+ return question_answerer_pipe
47
 
48
  def get_formatted_text_for_annotation(output):
49
  colour_map = {'Sex': '#5DD75D',
 
82
  pipeline_summarization = init_text_summarization_model()
83
  pipeline_zsl, template = init_zsl_topic_classification()
84
  pipeline_ner =init_ner_pipeline()
85
+ pipeline_qa = init_qa_pipeline()
86
 
87
  st.header("Intelligent Document Automation")
88
 
 
103
  elif selected_menu == "Extract Text":
104
  st.write(get_text_from_ocr_engine())
105
  elif selected_menu == "Summarize Document":
106
+ text = get_text_from_ocr_engine()
107
+ with st.spinner("Summarizing Document..."):
108
+ summary_text = pipeline_summarization(review, max_length=130, min_length=10, do_sample=False)
109
+ # Show output
110
+ st.write(summary_text[0]['summary_text'])
111
+
112
  elif selected_menu == "Extract Entities":
113
  text = get_text_from_ocr_engine()
114
  output = pipeline_ner (text)
115
  entities_text =get_formatted_text_for_annotation(output)
116
  annotated_text(*entities_text)
117
 
 
118
  elif selected_menu == "Get Answers":
119
+ st.subheader('Question')
120
+ question_text = st.text_input("Type your question")
121
+ context = get_text_from_ocr_engine()
122
+ if question_text:
123
+ result = question_answerer(question=question_text, context=context)
124
+ st.subheader('Answer')
125
+ st.text(result['answer'])