Spaces:
Sleeping
Sleeping
File size: 3,855 Bytes
37e79cc b9f656e 1ca46ec 37e79cc b9f656e 323f6ed b9f656e 1ca46ec b9f656e 1ca46ec b9f656e 1ca46ec b9f656e 1ca46ec b9f656e 1ca46ec b9f656e 1ca46ec b9f656e 1ca46ec b9f656e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import gradio as gr
import groq
import io
import numpy as np
import soundfile as sf
import pyttsx3 # Text-to-Speech engine
# Define the API key directly in the code
API_KEY = "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" # Replace this with your actual Groq API key
def transcribe_audio(audio):
if audio is None:
return ""
client = groq.Client(api_key=API_KEY)
# Convert audio to the format expected by the model
audio_data = audio[1] # Get the numpy array from the tuple
buffer = io.BytesIO()
sf.write(buffer, audio_data, audio[0], format='wav')
buffer.seek(0)
try:
# Use Distil-Whisper English powered by Groq for transcription
completion = client.audio.transcriptions.create(
model="distil-whisper-large-v3-en",
file=("audio.wav", buffer),
response_format="text"
)
return completion
except Exception as e:
return f"Error in transcription: {str(e)}"
def generate_response(transcription):
if not transcription:
return "No transcription available. Please try speaking again."
client = groq.Client(api_key=API_KEY)
try:
# Use Llama 3 70B powered by Groq for text generation
completion = client.chat.completions.create(
model="llama3-70b-8192",
messages=[{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": transcription}],
)
return completion.choices[0].message.content
except Exception as e:
return f"Error in response generation: {str(e)}"
def text_to_speech(response_text):
# Initialize the pyttsx3 engine for text-to-speech
engine = pyttsx3.init()
audio_buffer = io.BytesIO()
engine.save_to_file(response_text, audio_buffer)
engine.runAndWait()
audio_buffer.seek(0)
return audio_buffer
def process_audio(audio):
transcription = transcribe_audio(audio)
response = generate_response(transcription)
audio_response = text_to_speech(response)
return transcription, response, audio_response
custom_css = """
.gradio-container {
background-color: #f5f5f5;
}
.gr-button-primary {
background-color: #f55036 !important;
border-color: #f55036 !important;
}
.gr-button-secondary {
color: #f55036 !important;
border-color: #f55036 !important;
}
#groq-badge {
position: fixed;
bottom: 20px;
right: 20px;
z-index: 1000;
}
"""
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# ๐๏ธ LLAVA Voice-Powered AI Assistant")
with gr.Row():
audio_input = gr.Audio(label="Speak!", type="numpy", streaming=True) # Enable real-time streaming
with gr.Row():
transcription_output = gr.Textbox(label="Transcription", interactive=False)
response_output = gr.Textbox(label="AI Assistant Response", interactive=False)
audio_output = gr.Audio(label="AI Response Audio", interactive=False)
submit_button = gr.Button("Process", variant="primary")
# Add the Groq badge
gr.HTML("""
<div id="groq-badge">
<div style="color: #f55036; font-weight: bold;">POWERED BY LLAVA</div>
</div>
""")
submit_button.click(
process_audio,
inputs=[audio_input],
outputs=[transcription_output, response_output, audio_output]
)
gr.Markdown("""
## How to use this app:
1. Click on the microphone icon and speak your message (or upload an audio file). Supported audio files include mp3, mp4, mpeg, mpga, m4a, wav, and webm file types.
2. The system will automatically transcribe your speech, generate a response, and play it as audio.
3. The transcription and AI assistant response will appear in the respective text boxes.
""")
demo.launch()
|