SaviAnna commited on
Commit
6c3ba69
1 Parent(s): d8146a1

Upload 6 files

Browse files
pages/ml_reviews_class.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sklearn.feature_extraction.text import CountVectorizer
2
+ from sklearn.linear_model import LogisticRegression
3
+ import re
4
+ import string
5
+ import pickle
6
+ import streamlit as st
7
+
8
+ # Функция очистки текста
9
+ def clean(text):
10
+ text = text.lower() # нижний регистр
11
+ text = re.sub(r'http\S+', " ", text) # удаляем ссылки
12
+ text = re.sub(r'@\w+',' ',text) # удаляем упоминания пользователей
13
+ text = re.sub(r'#\w+', ' ', text) # удаляем хэштеги
14
+ text = re.sub(r'\d+', ' ', text) # удаляем числа
15
+ text = text.translate(str.maketrans('', '', string.punctuation))
16
+ return text
17
+
18
+ # Загрузка весов модели
19
+
20
+ model_filename = '/home/nika/ds-phase-2/10-nlp/model_weights.pkl'
21
+ with open(model_filename, 'rb') as file:
22
+ model = pickle.load(file)
23
+
24
+ # Загрузка весов векторизатора
25
+ vectorizer = CountVectorizer()
26
+ vectorizer_filename = '/home/nika/ds-phase-2/10-nlp/vectorizer_weights.pkl'
27
+ with open(vectorizer_filename, 'rb') as file:
28
+ vectorizer = pickle.load(file)
29
+
30
+ # Само приложение
31
+
32
+ st.title("CritiSense")
33
+ st.subheader("Movie Review Sentiment Analyzer")
34
+ st.write("CritiSense is a powerful app that analyzes the sentiment of movie reviews.")
35
+ st.write("Whether you want to know if a review is positive or negative, CritiSense has got you covered.")
36
+ st.write("Just enter the review, and our app will provide you with instant sentiment analysis.")
37
+ st.write("Make informed decisions about movies with CritiSense!")
38
+ user_review = st.text_input("Enter your review:", "")
39
+ user_review_clean = clean(user_review)
40
+ user_features = vectorizer.transform([user_review_clean])
41
+ prediction = model.predict(user_features)
42
+
43
+ st.write("Review:", user_review)
44
+
45
+ if prediction == 1:
46
+ st.markdown("<p style='color: green;'>Sentiment: Positive</p>", unsafe_allow_html=True)
47
+ else:
48
+ st.markdown("<p style='color: red;'>Sentiment: Negative</p>", unsafe_allow_html=True)
pages/model_comments_weights.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a2642dc31855483b855511afc099cd80d65aac75520e8460b01c4164ad48a40
3
+ size 464784
pages/model_history.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7251915a6188c935eaa9d581c41f03c238a1058d3f7da77b95cd39252af42b13
3
+ size 551321853
pages/model_weights.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b27177e32cde75392fe954cc9ccceb799dc09a65a9144d1c07df9726134e8ec
3
+ size 1238083
pages/vectorizer_comments_weights.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6b8c9839ddfbe2a30d82701c713528ec1012bebe68bf3e156124d163f587c35
3
+ size 1281514
pages/vectorizer_weights.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:045809c9e4cd5709117634017a3da547cd6a927a0380773dce4811ce0b97e015
3
+ size 2466402