File size: 7,648 Bytes
4b7893b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import streamlit as st
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.llms import Together
from langchain import hub
from operator import itemgetter
from langchain.schema.runnable import RunnableParallel
from langchain.schema import format_document
from typing import List, Tuple
from langchain.chains import LLMChain
from langchain.chains import RetrievalQA
from langchain.schema.output_parser import StrOutputParser
from langchain.memory import StreamlitChatMessageHistory
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationSummaryMemory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
# Load the embedding function
model_name = "BAAI/bge-base-en"
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
embedding_function = HuggingFaceBgeEmbeddings(
model_name=model_name,
encode_kwargs=encode_kwargs
)
# Load the ChromaDB vector store
# persist_directory="./mrcpchromadb/"
# vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function,collection_name="mrcppassmednotes")
# Load the LLM
llm = Together(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
temperature=0.2,
max_tokens=4096,
top_k=4,
together_api_key=os.environ['pilotikval']
)
# Load the summarizeLLM
llmc = Together(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
temperature=0.2,
max_tokens=1024,
top_k=1,
together_api_key=os.environ['pilotikval']
)
msgs = StreamlitChatMessageHistory(key="langchain_messages")
memory = ConversationBufferMemory(chat_memory=msgs)
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
def _combine_documents(
docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"
):
doc_strings = [format_document(doc, document_prompt) for doc in docs]
return document_separator.join(doc_strings)
chistory = []
def store_chat_history(role: str, content: str):
# Append the new message to the chat history
chistory.append({"role": role, "content": content})
# Define the Streamlit app
def app():
with st.sidebar:
st.title("dochatter")
# Create a dropdown selection box
option = st.selectbox(
'Which retriever would you like to use?',
('RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine')
)
# Depending on the selected option, choose the appropriate retriever
if option == 'RespiratoryFishman':
persist_directory="./respfishmandbcud/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function,collection_name="fishmannotescud")
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
retriever = retriever # replace with your actual retriever
if option == 'RespiratoryMurray':
persist_directory="./respmurray/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function,collection_name="respmurraynotes")
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
retriever = retriever
if option == 'MedMRCP2':
persist_directory="./medmrcp2store/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function,collection_name="medmrcp2notes")
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
retriever = retriever
else:
persist_directory="./mrcpchromadb/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function,collection_name="mrcppassmednotes")
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
retriever = retriever # replace with your actual retriever
retriever = retriever # replace with your actual retriever
#template = """You are an AI chatbot having a conversation with a human. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.
#{context}
#{history}
#Human: {human_input}
#AI: """
#prompt = PromptTemplate(input_variables=["history", "question"], template=template)
#template = st.text_area("Template", value=template, height=180)
#prompt2 = ChatPromptTemplate.from_template(template)
# Session State
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
## Retry lets go
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question which contains the themes of the conversation. Do not write the question. Do not write the answer.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
template = """You are helping a doctor. Answer with what you know from the context provided. Please be as detailed and thorough. Answer the question based on the following context:
{context}
Question: {question}
"""
ANSWER_PROMPT = ChatPromptTemplate.from_template(template)
_inputs = RunnableParallel(
standalone_question=RunnablePassthrough.assign(
chat_history=lambda x: chistory
)
| CONDENSE_QUESTION_PROMPT
| llmc
| StrOutputParser(),
)
_context = {
"context": itemgetter("standalone_question") | retriever | _combine_documents,
"question": lambda x: x["standalone_question"],
}
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | llm
st.header("Ask Away!")
# Display the messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
store_chat_history(message["role"], message["content"])
# prompt = hub.pull("rlm/rag-prompt")
prompts2 = st.chat_input("Say something")
# Implement using different book sources, if statements
if prompts2:
st.session_state.messages.append({"role": "user", "content": prompts2})
with st.chat_message("user"):
st.write(prompts2)
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = conversational_qa_chain.invoke(
{
"question": prompts2,
"chat_history": chistory,
}
)
st.write(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)
# Create a button to submit the question
# Initialize history
history = []
if __name__ == '__main__':
app() |