|
import streamlit as st |
|
import os |
|
from langchain.vectorstores import Chroma |
|
from langchain.embeddings import HuggingFaceBgeEmbeddings |
|
from langchain.llms import Together |
|
from langchain import hub |
|
from operator import itemgetter |
|
from langchain.schema.runnable import RunnableParallel |
|
from langchain.schema import format_document |
|
from typing import List, Tuple |
|
from langchain.chains import LLMChain |
|
from langchain.chains import RetrievalQA |
|
from langchain.schema.output_parser import StrOutputParser |
|
from langchain.memory import StreamlitChatMessageHistory |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.memory import ConversationSummaryMemory |
|
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate |
|
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough |
|
|
|
|
|
|
|
model_name = "BAAI/bge-base-en" |
|
encode_kwargs = {'normalize_embeddings': True} |
|
|
|
embedding_function = HuggingFaceBgeEmbeddings( |
|
model_name=model_name, |
|
encode_kwargs=encode_kwargs |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llm = Together( |
|
model="mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
temperature=0.2, |
|
max_tokens=4096, |
|
top_k=4, |
|
together_api_key=os.environ['pilotikval'] |
|
) |
|
|
|
|
|
llmc = Together( |
|
model="mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
temperature=0.2, |
|
max_tokens=1024, |
|
top_k=1, |
|
together_api_key=os.environ['pilotikval'] |
|
) |
|
|
|
msgs = StreamlitChatMessageHistory(key="langchain_messages") |
|
memory = ConversationBufferMemory(chat_memory=msgs) |
|
|
|
|
|
|
|
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}") |
|
|
|
def _combine_documents( |
|
docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n" |
|
): |
|
doc_strings = [format_document(doc, document_prompt) for doc in docs] |
|
return document_separator.join(doc_strings) |
|
|
|
|
|
|
|
chistory = [] |
|
|
|
def store_chat_history(role: str, content: str): |
|
|
|
chistory.append({"role": role, "content": content}) |
|
|
|
|
|
|
|
def app(): |
|
|
|
|
|
|
|
with st.sidebar: |
|
|
|
st.title("dochatter") |
|
|
|
option = st.selectbox( |
|
'Which retriever would you like to use?', |
|
('RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine') |
|
) |
|
|
|
if option == 'RespiratoryFishman': |
|
persist_directory="./respfishmandbcud/" |
|
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function,collection_name="fishmannotescud") |
|
retriever = vectordb.as_retriever(search_kwargs={"k": 5}) |
|
retriever = retriever |
|
|
|
if option == 'RespiratoryMurray': |
|
persist_directory="./respmurray/" |
|
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function,collection_name="respmurraynotes") |
|
retriever = vectordb.as_retriever(search_kwargs={"k": 5}) |
|
retriever = retriever |
|
|
|
if option == 'MedMRCP2': |
|
persist_directory="./medmrcp2store/" |
|
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function,collection_name="medmrcp2notes") |
|
retriever = vectordb.as_retriever(search_kwargs={"k": 5}) |
|
retriever = retriever |
|
else: |
|
persist_directory="./mrcpchromadb/" |
|
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function,collection_name="mrcppassmednotes") |
|
retriever = vectordb.as_retriever(search_kwargs={"k": 5}) |
|
retriever = retriever |
|
retriever = retriever |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if "messages" not in st.session_state.keys(): |
|
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question which contains the themes of the conversation. Do not write the question. Do not write the answer. |
|
|
|
Chat History: |
|
{chat_history} |
|
Follow Up Input: {question} |
|
Standalone question:""" |
|
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) |
|
|
|
template = """You are helping a doctor. Answer with what you know from the context provided. Please be as detailed and thorough. Answer the question based on the following context: |
|
{context} |
|
|
|
Question: {question} |
|
""" |
|
ANSWER_PROMPT = ChatPromptTemplate.from_template(template) |
|
|
|
|
|
_inputs = RunnableParallel( |
|
standalone_question=RunnablePassthrough.assign( |
|
chat_history=lambda x: chistory |
|
) |
|
| CONDENSE_QUESTION_PROMPT |
|
| llmc |
|
| StrOutputParser(), |
|
) |
|
_context = { |
|
"context": itemgetter("standalone_question") | retriever | _combine_documents, |
|
"question": lambda x: x["standalone_question"], |
|
} |
|
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | llm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.header("Ask Away!") |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
store_chat_history(message["role"], message["content"]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
prompts2 = st.chat_input("Say something") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if prompts2: |
|
st.session_state.messages.append({"role": "user", "content": prompts2}) |
|
with st.chat_message("user"): |
|
st.write(prompts2) |
|
|
|
|
|
|
|
if st.session_state.messages[-1]["role"] != "assistant": |
|
with st.chat_message("assistant"): |
|
with st.spinner("Thinking..."): |
|
response = conversational_qa_chain.invoke( |
|
{ |
|
"question": prompts2, |
|
"chat_history": chistory, |
|
} |
|
) |
|
st.write(response) |
|
message = {"role": "assistant", "content": response} |
|
st.session_state.messages.append(message) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
history = [] |
|
|
|
if __name__ == '__main__': |
|
app() |