mainchange cgpt 1
Browse files
app.py
CHANGED
@@ -2,12 +2,12 @@ import streamlit as st
|
|
2 |
import os
|
3 |
from langchain.vectorstores import Chroma
|
4 |
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
5 |
-
from langchain_together import Together
|
6 |
from langchain import hub
|
7 |
from operator import itemgetter
|
8 |
-
from langchain.schema import RunnableParallel, format_document
|
9 |
from typing import List, Tuple
|
10 |
-
from langchain.chains import LLMChain,
|
11 |
from langchain.schema.output_parser import StrOutputParser
|
12 |
from langchain.memory import StreamlitChatMessageHistory, ConversationBufferMemory, ConversationSummaryMemory
|
13 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate
|
@@ -22,10 +22,6 @@ embedding_function = HuggingFaceBgeEmbeddings(
|
|
22 |
encode_kwargs=encode_kwargs
|
23 |
)
|
24 |
|
25 |
-
# Load the ChromaDB vector store
|
26 |
-
# persist_directory="./mrcpchromadb/"
|
27 |
-
# vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="mrcppassmednotes")
|
28 |
-
|
29 |
# Load the LLM
|
30 |
llm = Together(
|
31 |
model="mistralai/Mixtral-8x22B-Instruct-v0.1",
|
@@ -122,7 +118,7 @@ def app():
|
|
122 |
}
|
123 |
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | llm
|
124 |
|
125 |
-
st.header("
|
126 |
for message in st.session_state.messages:
|
127 |
with st.chat_message(message["role"]):
|
128 |
st.write(message["content"])
|
|
|
2 |
import os
|
3 |
from langchain.vectorstores import Chroma
|
4 |
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
5 |
+
from langchain_together import Together
|
6 |
from langchain import hub
|
7 |
from operator import itemgetter
|
8 |
+
from langchain.schema import RunnableParallel, format_document
|
9 |
from typing import List, Tuple
|
10 |
+
from langchain.chains import LLMChain, ConversationalRetrievalChain
|
11 |
from langchain.schema.output_parser import StrOutputParser
|
12 |
from langchain.memory import StreamlitChatMessageHistory, ConversationBufferMemory, ConversationSummaryMemory
|
13 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate
|
|
|
22 |
encode_kwargs=encode_kwargs
|
23 |
)
|
24 |
|
|
|
|
|
|
|
|
|
25 |
# Load the LLM
|
26 |
llm = Together(
|
27 |
model="mistralai/Mixtral-8x22B-Instruct-v0.1",
|
|
|
118 |
}
|
119 |
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | llm
|
120 |
|
121 |
+
st.header("Ask Away!")
|
122 |
for message in st.session_state.messages:
|
123 |
with st.chat_message(message["role"]):
|
124 |
st.write(message["content"])
|