File size: 19,710 Bytes
4d880a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
#!/bin/env python3.11
import os
import sqlite3
import replicate
import argparse
import requests
from datetime import datetime
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, HTTPException, Request, Form, Query,Response
from fastapi.templating import Jinja2Templates
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from typing import Optional, List
import uvicorn
from asyncio import gather, Semaphore, create_task
from mistralai import Mistral
from contextlib import contextmanager
from io import BytesIO
import zipfile
import sys
print(f"Arguments: {sys.argv}")
token = os.getenv("HF_TOKEN")
api_key = os.getenv("MISTRAL_API_KEY")
agent_id = os.getenv("MISTRAL_FLUX_AGENT")
HEADER = "\033[38;2;255;255;153m"
TITLE = "\033[38;2;255;255;153m"
MENU = "\033[38;2;255;165;0m"
SUCCESS = "\033[38;2;153;255;153m"
ERROR = "\033[38;2;255;69;0m"
MAIN = "\033[38;2;204;204;255m"
SPEAKER1 = "\033[38;2;173;216;230m"
SPEAKER2 = "\033[38;2;255;179;102m"
RESET = "\033[0m"
#os.system("clear")
#print(f"{HEADER}--------------------\nMY FLUX CREATOR v1.0\n--------------------{RESET}\n")
DOWNLOAD_DIR = "/mnt/d/ai/dialog/2/flux-pics"
DATABASE_PATH = "flux_logs_neu.db"
TIMEOUT_DURATION = 900 # Timeout-Dauer in Sekunden
IMAGE_STORAGE_PATH = DOWNLOAD_DIR # Pfad auf flux-pics setzen
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
app.mount("/flux-pics", StaticFiles(directory=DOWNLOAD_DIR), name="flux-pics")
templates = Jinja2Templates(directory="templates")
@contextmanager
def get_db_connection(db_path=DATABASE_PATH):
conn = sqlite3.connect(db_path)
try:
yield conn
finally:
conn.close()
def initialize_database(db_path=DATABASE_PATH):
with get_db_connection(db_path) as conn:
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS generation_logs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT,
prompt TEXT,
optimized_prompt TEXT,
hf_lora TEXT,
lora_scale REAL,
aspect_ratio TEXT,
guidance_scale REAL,
output_quality INTEGER,
prompt_strength REAL,
num_inference_steps INTEGER,
output_file TEXT,
album_id INTEGER,
category_id INTEGER
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS albums (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS categories (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS pictures (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT,
file_path TEXT,
file_name TEXT,
album_id INTEGER,
FOREIGN KEY (album_id) REFERENCES albums(id)
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS picture_categories (
picture_id INTEGER,
category_id INTEGER,
FOREIGN KEY (picture_id) REFERENCES pictures(id),
FOREIGN KEY (category_id) REFERENCES categories(id),
PRIMARY KEY (picture_id, category_id)
)
""")
conn.commit()
def log_generation(args, optimized_prompt, image_file):
file_path, file_name = os.path.split(image_file)
try:
with get_db_connection() as conn:
cursor = conn.cursor()
cursor.execute("""
INSERT INTO generation_logs (
timestamp, prompt, optimized_prompt, hf_lora, lora_scale, aspect_ratio, guidance_scale,
output_quality, prompt_strength, num_inference_steps, output_file, album_id, category_id
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
args.prompt,
optimized_prompt,
args.hf_lora,
args.lora_scale,
args.aspect_ratio,
args.guidance_scale,
args.output_quality,
args.prompt_strength,
args.num_inference_steps,
image_file,
args.album_id,
args.category_id
))
picture_id = cursor.lastrowid
cursor.execute("""
INSERT INTO pictures (
timestamp, file_path, file_name, album_id
) VALUES (?, ?, ?, ?)
""", (
datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
file_path,
file_name,
args.album_id
))
picture_id = cursor.lastrowid
# Insert multiple categories
for category_id in args.category_ids:
cursor.execute("""
INSERT INTO picture_categories (picture_id, category_id)
VALUES (?, ?)
""", (picture_id, category_id))
conn.commit()
except sqlite3.Error as e:
print(f"Error logging generation: {e}")
@app.on_event("startup")
def startup_event():
initialize_database()
@app.get("/")
def read_root(request: Request):
with get_db_connection() as conn:
cursor = conn.cursor()
cursor.execute("SELECT id, name FROM albums")
albums = cursor.fetchall()
cursor.execute("SELECT id, name FROM categories")
categories = cursor.fetchall()
return templates.TemplateResponse("index.html", {"request": request, "albums": albums, "categories": categories})
@app.get("/archive")
def read_archive(
request: Request,
album: Optional[str] = Query(None),
category: Optional[List[str]] = Query(None),
search: Optional[str] = None,
items_per_page: int = Query(30),
page: int = Query(1)
):
album_id = int(album) if album and album.isdigit() else None
category_ids = [int(cat) for cat in category] if category else []
offset = (page - 1) * items_per_page
with get_db_connection() as conn:
cursor = conn.cursor()
query = """
SELECT gl.timestamp, gl.prompt, gl.optimized_prompt, gl.output_file, a.name as album, c.name as category
FROM generation_logs gl
LEFT JOIN albums a ON gl.album_id = a.id
LEFT JOIN categories c ON gl.category_id = c.id
WHERE 1=1
"""
params = []
if album_id is not None:
query += " AND gl.album_id = ?"
params.append(album_id)
if category_ids:
query += " AND gl.category_id IN ({})".format(','.join('?' for _ in category_ids))
params.extend(category_ids)
if search:
query += " AND (gl.prompt LIKE ? OR gl.optimized_prompt LIKE ?)"
params.append(f'%{search}%')
params.append(f'%{search}%')
query += " ORDER BY gl.timestamp DESC LIMIT ? OFFSET ?"
params.extend([items_per_page, offset])
cursor.execute(query, params)
logs = cursor.fetchall()
logs = [{
"timestamp": log[0],
"prompt": log[1],
"optimized_prompt": log[2],
"output_file": log[3],
"album": log[4],
"category": log[5]
} for log in logs]
cursor.execute("SELECT id, name FROM albums")
albums = cursor.fetchall()
cursor.execute("SELECT id, name FROM categories")
categories = cursor.fetchall()
return templates.TemplateResponse("archive.html", {
"request": request,
"logs": logs,
"albums": albums,
"categories": categories,
"selected_album": album,
"selected_categories": category_ids,
"search_query": search,
"items_per_page": items_per_page,
"page": page
})
@app.get("/backend")
def read_backend(request: Request):
with get_db_connection() as conn:
cursor = conn.cursor()
cursor.execute("SELECT id, name FROM albums")
albums = cursor.fetchall()
cursor.execute("SELECT id, name FROM categories")
categories = cursor.fetchall()
return templates.TemplateResponse("backend.html", {"request": request, "albums": albums, "categories": categories})
@app.post("/create_album")
def create_album(name: str = Form(...)):
try:
with get_db_connection() as conn:
cursor = conn.cursor()
cursor.execute("INSERT INTO albums (name) VALUES (?)", (name,))
conn.commit()
return {"message": "Album erstellt"}
except sqlite3.Error as e:
raise HTTPException(status_code=500, detail=f"Error creating album: {e}")
@app.post("/create_category")
def create_category(name: str = Form(...)):
try:
with get_db_connection() as conn:
cursor = conn.cursor()
cursor.execute("INSERT INTO categories (name) VALUES (?)", (name,))
conn.commit()
return {"message": "Kategorie erstellt"}
except sqlite3.Error as e:
raise HTTPException(status_code=500, detail=f"Error creating category: {e}")
@app.post("/flux-pics")
async def download_images(request: Request):
try:
body = await request.json()
print(f"Received request body: {body}") # Debug log
image_files = body.get("selectedImages", [])
if not image_files:
raise HTTPException(status_code=400, detail="Keine Bilder ausgewählt.")
print(f"Processing image files: {image_files}") # Debug log
# Überprüfe ob Download-Verzeichnis existiert
if not os.path.exists(IMAGE_STORAGE_PATH):
print(f"Storage path not found: {IMAGE_STORAGE_PATH}") # Debug log
raise HTTPException(status_code=500, detail="Storage path not found")
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zip_file:
for image_file in image_files:
image_path = os.path.join(IMAGE_STORAGE_PATH, image_file)
print(f"Processing file: {image_path}") # Debug log
if os.path.exists(image_path):
zip_file.write(image_path, arcname=image_file)
else:
print(f"File not found: {image_path}") # Debug log
raise HTTPException(status_code=404, detail=f"Bild {image_file} nicht gefunden.")
zip_buffer.seek(0)
# Korrekter Response mit Buffer
return Response(
content=zip_buffer.getvalue(),
media_type="application/zip",
headers={
"Content-Disposition": f"attachment; filename=images.zip"
}
)
except Exception as e:
print(f"Error in download_images: {str(e)}") # Debug log
raise HTTPException(status_code=500, detail=str(e))
@app.post("/flux-pics/single")
async def download_single_image(request: Request):
try:
data = await request.json()
filename = data.get("filename")
print(f"Requested file download: {filename}") # Debug log
if not filename:
print("No filename provided") # Debug log
raise HTTPException(status_code=400, detail="Kein Dateiname angegeben")
file_path = os.path.join(IMAGE_STORAGE_PATH, filename)
print(f"Full file path: {file_path}") # Debug log
if not os.path.exists(file_path):
print(f"File not found: {file_path}") # Debug log
raise HTTPException(status_code=404, detail=f"Datei {filename} nicht gefunden")
# Determine MIME type
file_extension = filename.lower().split('.')[-1]
mime_types = {
'png': 'image/png',
'jpg': 'image/jpeg',
'jpeg': 'image/jpeg',
'gif': 'image/gif',
'webp': 'image/webp'
}
media_type = mime_types.get(file_extension, 'application/octet-stream')
print(f"Serving file with media type: {media_type}") # Debug log
return FileResponse(
path=file_path,
filename=filename,
media_type=media_type,
headers={
"Content-Disposition": f"attachment; filename={filename}"
}
)
except Exception as e:
print(f"Error in download_single_image: {str(e)}") # Debug log
raise HTTPException(status_code=500, detail=str(e))
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
try:
data = await websocket.receive_json()
prompts = data.get("prompts", [data])
for prompt_data in prompts:
prompt_data['lora_scale'] = float(prompt_data['lora_scale'])
prompt_data['guidance_scale'] = float(prompt_data['guidance_scale'])
prompt_data['prompt_strength'] = float(prompt_data['prompt_strength'])
prompt_data['num_inference_steps'] = int(prompt_data['num_inference_steps'])
prompt_data['num_outputs'] = int(prompt_data['num_outputs'])
prompt_data['output_quality'] = int(prompt_data['output_quality'])
# Handle new album and category creation
album_name = prompt_data.get('album_id')
category_names = prompt_data.get('category_ids', [])
if album_name and not album_name.isdigit():
with get_db_connection() as conn:
cursor = conn.cursor()
cursor.execute("INSERT INTO albums (name) VALUES (?)", (album_name,))
conn.commit()
prompt_data['album_id'] = cursor.lastrowid
else:
prompt_data['album_id'] = int(album_name) if album_name else None
category_ids = []
for category_name in category_names:
if not category_name.isdigit():
with get_db_connection() as conn:
cursor = conn.cursor()
cursor.execute("INSERT INTO categories (name) VALUES (?)", (category_name,))
conn.commit()
category_ids.append(cursor.lastrowid)
else:
category_ids.append(int(category_name) if category_name else None)
prompt_data['category_ids'] = category_ids
args = argparse.Namespace(**prompt_data)
await websocket.send_json({"message": "Optimiere Prompt..."})
optimized_prompt = optimize_prompt(args.prompt) if getattr(args, 'agent', False) else args.prompt
await websocket.send_json({"optimized_prompt": optimized_prompt})
if prompt_data.get("optimize_only"):
continue
await generate_and_download_image(websocket, args, optimized_prompt)
except WebSocketDisconnect:
print("Client disconnected")
except Exception as e:
await websocket.send_json({"message": str(e)})
raise e
finally:
await websocket.close()
async def fetch_image(item, index, args, filenames, semaphore, websocket, timestamp):
async with semaphore:
try:
response = requests.get(item, timeout=TIMEOUT_DURATION)
if response.status_code == 200:
filename = f"{DOWNLOAD_DIR}/image_{timestamp}_{index}.{args.output_format}"
with open(filename, "wb") as file:
file.write(response.content)
filenames.append(f"/flux-pics/image_{timestamp}_{index}.{args.output_format}")
progress = int((index + 1) / args.num_outputs * 100)
await websocket.send_json({"progress": progress})
else:
await websocket.send_json({"message": f"Fehler beim Herunterladen des Bildes {index + 1}: {response.status_code}"})
except requests.exceptions.Timeout:
await websocket.send_json({"message": f"Timeout beim Herunterladen des Bildes {index + 1}"})
async def generate_and_download_image(websocket: WebSocket, args, optimized_prompt):
try:
input_data = {
"prompt": optimized_prompt,
"hf_lora": getattr(args, 'hf_lora', None), # Use getattr to safely access hf_lora
"lora_scale": args.lora_scale,
"num_outputs": args.num_outputs,
"aspect_ratio": args.aspect_ratio,
"output_format": args.output_format,
"guidance_scale": args.guidance_scale,
"output_quality": args.output_quality,
"prompt_strength": args.prompt_strength,
"num_inference_steps": args.num_inference_steps,
"disable_safety_checker": False
}
await websocket.send_json({"message": "Generiere Bilder..."})
# Debug: Log the start of the replication process
print(f"Starting replication process for {args.num_outputs} outputs with timeout {TIMEOUT_DURATION}")
output = replicate.run(
"lucataco/flux-dev-lora:091495765fa5ef2725a175a57b276ec30dc9d39c22d30410f2ede68a3eab66b3",
input=input_data,
timeout=TIMEOUT_DURATION
)
if not os.path.exists(DOWNLOAD_DIR):
os.makedirs(DOWNLOAD_DIR)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filenames = []
semaphore = Semaphore(3) # Limit concurrent downloads
tasks = [create_task(fetch_image(item, index, args, filenames, semaphore, websocket, timestamp)) for index, item in enumerate(output)]
await gather(*tasks)
for file in filenames:
log_generation(args, optimized_prompt, file)
await websocket.send_json({"message": "Bilder erfolgreich generiert", "generated_files": filenames})
except requests.exceptions.Timeout:
await websocket.send_json({"message": "Fehler bei der Bildgenerierung: Timeout überschritten"})
except Exception as e:
await websocket.send_json({"message": f"Fehler bei der Bildgenerierung: {str(e)}"})
raise Exception(f"Fehler bei der Bildgenerierung: {str(e)}")
def optimize_prompt(prompt):
api_key = os.environ.get("MISTRAL_API_KEY")
agent_id = os.environ.get("MISTRAL_FLUX_AGENT")
if not api_key or not agent_id:
raise ValueError("MISTRAL_API_KEY oder MISTRAL_FLUX_AGENT nicht gesetzt")
client = Mistral(api_key=api_key)
chat_response = client.agents.complete(
agent_id=agent_id,
messages=[{"role": "user", "content": f"Optimiere folgenden Prompt für Flux Lora: {prompt}"}]
)
return chat_response.choices[0].message.content
if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser(description="Beschreibung")
parser.add_argument('--hf_lora', default=None, help='HF LoRA Model')
args = parser.parse_args()
# Pass arguments to the FastAPI application
app.state.args = args
# Run the Uvicorn server
# uvicorn.run(app, host="0.0.0.0", port=8000, timeout_keep_alive=900)
# Run server
uvicorn.run(
"main:app",
host="0.0.0.0",
port=8000,
reload=True,
log_level="debug"
)
|