Spaces:
Sleeping
Sleeping
File size: 7,212 Bytes
4e60da3 ec1c2f8 e9722ce 4e60da3 e9722ce 7150512 ec1c2f8 4e60da3 e9722ce 4e60da3 7150512 4e60da3 ec1c2f8 4e60da3 97fb5a2 4e60da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import os
import gradio as gr
import random
import pickle
import numpy as np
import zipfile
import trimesh
from PIL import Image
from huggingface_hub import hf_hub_download
def pose_generation(scene, count):
assert isinstance(scene, str)
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/pose_generation/results.pkl')
with open(results_path, 'rb') as f:
results = pickle.load(f)
images = [Image.fromarray(results[scene][random.randint(0, 19)]) for i in range(count)]
return images
def pose_generation_mesh(scene, count):
assert isinstance(scene, str)
scene_path = f"./results/pose_generation/mesh_results/{scene}/scene_downsample.ply"
if not os.path.exists(scene_path):
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/pose_generation/mesh_results.zip')
os.makedirs('./results/pose_generation/', exist_ok=True)
with zipfile.ZipFile(results_path, 'r') as zip_ref:
zip_ref.extractall('./results/pose_generation/')
res = './results/pose_generation/tmp.glb'
S = trimesh.Scene()
S.add_geometry(trimesh.load(scene_path))
for i in range(count):
rid = random.randint(0, 19)
S.add_geometry(trimesh.load(
f"./results/pose_generation/mesh_results/{scene}/body{rid:0>3d}.ply"
))
S.export(res)
return res
def motion_generation(scene):
assert isinstance(scene, str)
cnt = {
'MPH1Library': 3,
'MPH16': 6,
'N0SittingBooth': 7,
'N3OpenArea': 5
}[scene]
res = f"./results/motion_generation/results/{scene}/{random.randint(0, cnt-1)}.gif"
if not os.path.exists(res):
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/motion_generation/results.zip')
os.makedirs('./results/motion_generation/', exist_ok=True)
with zipfile.ZipFile(results_path, 'r') as zip_ref:
zip_ref.extractall('./results/motion_generation/')
return res
def grasp_generation(case_id):
assert isinstance(case_id, str)
res = f"./results/grasp_generation/results/{case_id}/{random.randint(0, 19)}.glb"
if not os.path.exists(res):
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/grasp_generation/results.zip')
os.makedirs('./results/grasp_generation/', exist_ok=True)
with zipfile.ZipFile(results_path, 'r') as zip_ref:
zip_ref.extractall('./results/grasp_generation/')
return res
def path_planning(case_id):
assert isinstance(case_id, str)
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/path_planning/results.pkl')
with open(results_path, 'rb') as f:
results = pickle.load(f)
case = results[case_id]
steps = case['step']
image = Image.fromarray(case['image'])
return image, steps
with gr.Blocks() as demo:
gr.Markdown("# **<p align='center'>Diffusion-based Generation, Optimization, and Planning in 3D Scenes</p>**")
gr.HTML(value="<img src='file/figures/teaser.png' alt='Teaser' width='710px' height='284px' style='display: block; margin: auto;'>")
gr.HTML(value="<p align='center' style='font-size: 1.25em; color: #485fc7;'><a href='' target='_blank'>Paper</a> | <a href='' target='_blank'>Project Page</a> | <a href='' target='_blank'>Github</a></p>")
gr.Markdown("<p align='center'><i>\"SceneDiffuser provides a unified model for solving scene-conditioned generation, optimization, and planning.\"</i></p>")
## five task
## pose generation
with gr.Tab("Pose Generation"):
with gr.Row():
with gr.Column():
input1 = [
gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes'),
gr.Slider(minimum=1, maximum=4, step=1, label='Count', interactive=True)
]
button1 = gr.Button("Generate")
with gr.Column():
output1 = [
gr.Gallery(label="Result").style(grid=[1], height="auto")
]
button1.click(pose_generation, inputs=input1, outputs=output1)
with gr.Tab("Pose Generation Mesh"):
input11 = [
gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes'),
gr.Slider(minimum=1, maximum=4, step=1, label='Count', interactive=True)
]
button11 = gr.Button("Generate")
output11 = gr.Model3D(clear_color=[255, 255, 255, 255], label="Result")
button11.click(pose_generation_mesh, inputs=input11, outputs=output11)
## motion generation
with gr.Tab("Motion Generation"):
with gr.Row():
with gr.Column():
input2 = [
gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes')
]
button2 = gr.Button("Generate")
with gr.Column():
output2 = gr.Image(label="Result")
button2.click(motion_generation, inputs=input2, outputs=output2)
## grasp generation
with gr.Tab("Grasp Generation"):
with gr.Row():
with gr.Column():
input3 = [
gr.Dropdown(choices=['contactdb+apple', 'contactdb+camera', 'contactdb+cylinder_medium', 'contactdb+door_knob', 'contactdb+rubber_duck', 'contactdb+water_bottle', 'ycb+baseball', 'ycb+pear', 'ycb+potted_meat_can', 'ycb+tomato_soup_can'], label='Objects')
]
button3 = gr.Button("Run")
with gr.Column():
output3 = [
gr.Model3D(clear_color=[255, 255, 255, 255], label="Result")
]
button3.click(grasp_generation, inputs=input3, outputs=output3)
## path planning
with gr.Tab("Path Planing"):
with gr.Row():
with gr.Column():
input4 = [
gr.Dropdown(choices=['scene0603_00_N0pT', 'scene0621_00_cJ4H', 'scene0634_00_48Y3', 'scene0634_00_gIRH', 'scene0637_00_YgjR', 'scene0640_00_BO94', 'scene0641_00_3K6J', 'scene0641_00_KBKx', 'scene0641_00_cb7l', 'scene0645_00_35Hy', 'scene0645_00_47D1', 'scene0645_00_XfLE', 'scene0667_00_DK4F', 'scene0667_00_o7XB', 'scene0667_00_rUMp', 'scene0672_00_U250', 'scene0673_00_Jyw8', 'scene0673_00_u1lJ', 'scene0678_00_QbNL', 'scene0678_00_RrY0', 'scene0678_00_aE1p', 'scene0678_00_hnXu', 'scene0694_00_DgAL', 'scene0694_00_etF5', 'scene0698_00_tT3Q'], label='Scenes'),
]
button4 = gr.Button("Run")
with gr.Column():
# output4 = gr.Gallery(label="Result").style(grid=[1], height="auto")
output4 = [
gr.Image(label="Result"),
gr.Number(label="Steps", precision=0)
]
button4.click(path_planning, inputs=input4, outputs=output4)
## arm motion planning
with gr.Tab("Arm Motion Planning"):
gr.Markdown('Coming soon!')
gr.Markdown("<p>Note: Currently, the output results are pre-sampled results. We will deploy a real-time model after we release the code.</p>")
demo.launch() |