Spaces:
Sleeping
Sleeping
SceneDiffuser
commited on
Commit
β’
75dc06d
1
Parent(s):
dd12e04
Update
Browse files- README.md +11 -4
- app.py +14 -24
- interface.py +64 -18
- scenediffuser +1 -1
README.md
CHANGED
@@ -1,11 +1,18 @@
|
|
1 |
---
|
2 |
title: SceneDiffuserDemo
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
|
|
1 |
---
|
2 |
title: SceneDiffuserDemo
|
3 |
+
emoji: π
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.18.0
|
8 |
app_file: app.py
|
9 |
+
tags:
|
10 |
+
- 3D
|
11 |
+
- Scene Understanding
|
12 |
+
- Diffusion
|
13 |
+
- Generation
|
14 |
+
- Optimization
|
15 |
+
- Planning
|
16 |
pinned: false
|
17 |
---
|
18 |
|
app.py
CHANGED
@@ -13,7 +13,7 @@ with gr.Blocks(css='style.css') as demo:
|
|
13 |
gr.HTML(value="<p align='center' style='font-size: 1.2em; color: #485fc7;'><a href='https://arxiv.org/abs/2301.06015' target='_blank'>arXiv</a> | <a href='https://scenediffuser.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/scenediffuser/Scene-Diffuser' target='_blank'>Code</a></p>")
|
14 |
gr.Markdown("<p align='center'><i>\"SceneDiffuser provides a unified model for solving scene-conditioned generation, optimization, and planning.\"</i></p>")
|
15 |
|
16 |
-
## five
|
17 |
## pose generation
|
18 |
with gr.Tab("Pose Generation"):
|
19 |
with gr.Row():
|
@@ -32,33 +32,23 @@ with gr.Blocks(css='style.css') as demo:
|
|
32 |
button1.click(IF.pose_generation, inputs=input1, outputs=[image1])
|
33 |
|
34 |
## motion generation
|
35 |
-
# with gr.Tab("Motion Generation"):
|
36 |
-
# with gr.Row():
|
37 |
-
# with gr.Column(scale=2):
|
38 |
-
# selector2 = gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes', value='MPH16', interactive=True)
|
39 |
-
# with gr.Row():
|
40 |
-
# sample2 = gr.Slider(minimum=1, maximum=8, step=1, label='Count', interactive=True, value=1)
|
41 |
-
# seed2 = gr.Slider(minimum=0, maximum=2 ** 16, step=1, label='Seed', interactive=True, value=2023)
|
42 |
-
# with gr.Row():
|
43 |
-
# withstart = gr.Checkbox(label='With Start', interactive=True, value=False)
|
44 |
-
# opt2 = gr.Checkbox(label='Optimizer Guidance', interactive=True, value=True)
|
45 |
-
# scale_opt2 = gr.Slider(minimum=0.1, maximum=9.9, step=0.1, label='Scale', interactive=True, value=1.1)
|
46 |
-
# button2 = gr.Button("Run")
|
47 |
-
# with gr.Column(scale=3):
|
48 |
-
# image2 = gr.Image(label="Result")
|
49 |
-
# input2 = [selector2, sample2, seed2, withstart, opt2, scale_opt2]
|
50 |
-
# button2.click(IF.motion_generation, inputs=input2, outputs=image2)
|
51 |
with gr.Tab("Motion Generation"):
|
52 |
with gr.Row():
|
53 |
with gr.Column(scale=2):
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
gr.
|
|
|
|
|
|
|
|
|
59 |
with gr.Column(scale=3):
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
|
63 |
## grasp generation
|
64 |
with gr.Tab("Grasp Generation"):
|
|
|
13 |
gr.HTML(value="<p align='center' style='font-size: 1.2em; color: #485fc7;'><a href='https://arxiv.org/abs/2301.06015' target='_blank'>arXiv</a> | <a href='https://scenediffuser.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/scenediffuser/Scene-Diffuser' target='_blank'>Code</a></p>")
|
14 |
gr.Markdown("<p align='center'><i>\"SceneDiffuser provides a unified model for solving scene-conditioned generation, optimization, and planning.\"</i></p>")
|
15 |
|
16 |
+
## five tasks
|
17 |
## pose generation
|
18 |
with gr.Tab("Pose Generation"):
|
19 |
with gr.Row():
|
|
|
32 |
button1.click(IF.pose_generation, inputs=input1, outputs=[image1])
|
33 |
|
34 |
## motion generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
with gr.Tab("Motion Generation"):
|
36 |
with gr.Row():
|
37 |
with gr.Column(scale=2):
|
38 |
+
selector2 = gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes', value='MPH16', interactive=True)
|
39 |
+
with gr.Row():
|
40 |
+
sample2 = gr.Slider(minimum=1, maximum=2, step=1, label='Count', interactive=True, value=1)
|
41 |
+
seed2 = gr.Slider(minimum=0, maximum=2 ** 16, step=1, label='Seed', interactive=True, value=2023)
|
42 |
+
with gr.Row():
|
43 |
+
withstart = gr.Checkbox(label='With Start', interactive=True, value=False)
|
44 |
+
opt2 = gr.Checkbox(label='Optimizer Guidance', interactive=True, value=False)
|
45 |
+
scale_opt2 = gr.Slider(minimum=0.1, maximum=9.9, step=0.1, label='Scale', interactive=True, value=1.1)
|
46 |
+
button2 = gr.Button("Run")
|
47 |
with gr.Column(scale=3):
|
48 |
+
image2 = gr.Gallery(label="Image [Result]").style(grid=[1], height="50")
|
49 |
+
gr.HTML("<p style='font-size: 0.9em; color: #555555;'>Notes: For motion generation, it will take a long time to do sampleing and rendering, especifically when you tick optimizer guidance.</p>")
|
50 |
+
input2 = [selector2, sample2, seed2, withstart, opt2, scale_opt2]
|
51 |
+
button2.click(IF.motion_generation, inputs=input2, outputs=image2)
|
52 |
|
53 |
## grasp generation
|
54 |
with gr.Tab("Grasp Generation"):
|
interface.py
CHANGED
@@ -4,6 +4,8 @@ import torch
|
|
4 |
import hydra
|
5 |
import numpy as np
|
6 |
import zipfile
|
|
|
|
|
7 |
|
8 |
from typing import Any
|
9 |
from hydra import compose, initialize
|
@@ -24,9 +26,9 @@ def model_weight_path(task, has_observation=False):
|
|
24 |
if task == 'pose_gen':
|
25 |
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/2022-11-09_11-22-52_PoseGen_ddm4_lr1e-4_ep100/ckpts/model.pth')
|
26 |
elif task == 'motion_gen' and has_observation == True:
|
27 |
-
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights
|
28 |
elif task == 'motion_gen' and has_observation == False:
|
29 |
-
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights
|
30 |
elif task == 'path_planning':
|
31 |
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/2022-11-25_20-57-28_Path_ddm4_LR1e-4_E100_REL/ckpts/model.pth')
|
32 |
else:
|
@@ -140,7 +142,10 @@ def _planning(cfg: DictConfig, scene: str) -> Any:
|
|
140 |
|
141 |
|
142 |
## interface for five task
|
143 |
-
## real-time model:
|
|
|
|
|
|
|
144 |
def pose_generation(scene, count, seed, opt, scale) -> Any:
|
145 |
scene_model_weight_path = pretrain_pointtrans_weight_path()
|
146 |
data_dir, smpl_dir, prox_dir, vposer_dir = pose_motion_data_path()
|
@@ -181,22 +186,63 @@ def pose_generation(scene, count, seed, opt, scale) -> Any:
|
|
181 |
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
182 |
return res
|
183 |
|
184 |
-
def motion_generation(scene):
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
return res
|
201 |
|
202 |
def grasp_generation(case_id):
|
|
|
4 |
import hydra
|
5 |
import numpy as np
|
6 |
import zipfile
|
7 |
+
import time
|
8 |
+
import uuid
|
9 |
|
10 |
from typing import Any
|
11 |
from hydra import compose, initialize
|
|
|
26 |
if task == 'pose_gen':
|
27 |
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/2022-11-09_11-22-52_PoseGen_ddm4_lr1e-4_ep100/ckpts/model.pth')
|
28 |
elif task == 'motion_gen' and has_observation == True:
|
29 |
+
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/2022-11-09_14-28-12_MotionGen_ddm_T200_lr1e-4_ep300_obser/ckpts/model.pth')
|
30 |
elif task == 'motion_gen' and has_observation == False:
|
31 |
+
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/2022-11-09_12-54-50_MotionGen_ddm_T200_lr1e-4_ep300/ckpts/model.pth')
|
32 |
elif task == 'path_planning':
|
33 |
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/2022-11-25_20-57-28_Path_ddm4_LR1e-4_E100_REL/ckpts/model.pth')
|
34 |
else:
|
|
|
142 |
|
143 |
|
144 |
## interface for five task
|
145 |
+
## real-time model:
|
146 |
+
## - pose generation
|
147 |
+
## - motion generation
|
148 |
+
## - path planning
|
149 |
def pose_generation(scene, count, seed, opt, scale) -> Any:
|
150 |
scene_model_weight_path = pretrain_pointtrans_weight_path()
|
151 |
data_dir, smpl_dir, prox_dir, vposer_dir = pose_motion_data_path()
|
|
|
186 |
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
187 |
return res
|
188 |
|
189 |
+
def motion_generation(scene, count, seed, withstart, opt, scale) -> Any:
|
190 |
+
scene_model_weight_path = pretrain_pointtrans_weight_path()
|
191 |
+
data_dir, smpl_dir, prox_dir, vposer_dir = pose_motion_data_path()
|
192 |
+
override_config = [
|
193 |
+
"diffuser=ddpm",
|
194 |
+
"diffuser.steps=200",
|
195 |
+
"model=unet",
|
196 |
+
"model.use_position_embedding=true",
|
197 |
+
f"model.scene_model.pretrained_weights={scene_model_weight_path}",
|
198 |
+
"task=motion_gen",
|
199 |
+
f"task.has_observation={withstart}",
|
200 |
+
"task.dataset.repr_type=absolute",
|
201 |
+
"task.dataset.frame_interval_test=20",
|
202 |
+
"task.visualizer.name=MotionGenVisualizerHF",
|
203 |
+
f"task.visualizer.ksample={count}",
|
204 |
+
f"task.dataset.data_dir={data_dir}",
|
205 |
+
f"task.dataset.smpl_dir={smpl_dir}",
|
206 |
+
f"task.dataset.prox_dir={prox_dir}",
|
207 |
+
f"task.dataset.vposer_dir={vposer_dir}",
|
208 |
+
]
|
209 |
+
if opt == True:
|
210 |
+
override_config += [
|
211 |
+
"optimizer=motion_in_scene",
|
212 |
+
"optimizer.scale_type=div_var",
|
213 |
+
f"optimizer.scale={scale}",
|
214 |
+
"optimizer.vposer=false",
|
215 |
+
"optimizer.contact_weight=0.02",
|
216 |
+
"optimizer.collision_weight=1.0",
|
217 |
+
"optimizer.smoothness_weight=0.001",
|
218 |
+
"optimizer.frame_interval=1",
|
219 |
+
]
|
220 |
|
221 |
+
initialize(config_path="./scenediffuser/configs", version_base=None)
|
222 |
+
config = compose(config_name="default", overrides=override_config)
|
223 |
+
|
224 |
+
random.seed(seed)
|
225 |
+
np.random.seed(seed)
|
226 |
+
torch.manual_seed(seed)
|
227 |
+
torch.cuda.manual_seed(seed)
|
228 |
+
torch.cuda.manual_seed_all(seed)
|
229 |
+
|
230 |
+
res_gifs = _sampling(config, scene)
|
231 |
+
|
232 |
+
## save sampled motion as .gif file
|
233 |
+
datestr = time.strftime("%Y-%m-%d", time.localtime(time.time()))
|
234 |
+
target_dir = os.path.join('./results/motion_generation/', f'd-{datestr}')
|
235 |
+
os.makedirs(target_dir, exist_ok=True)
|
236 |
+
res = []
|
237 |
+
uuid_str = uuid.uuid4()
|
238 |
+
for i, imgs in enumerate(res_gifs):
|
239 |
+
target_path = os.path.join(target_dir, f'{uuid_str}--{i}.gif')
|
240 |
+
imgs = [im.resize((720, 405)) for im in imgs] # resize image for low resolution to save space
|
241 |
+
img, *img_rest = imgs
|
242 |
+
img.save(fp=target_path, format='GIF', append_images=img_rest, save_all=True, duration=33.33, loop=0)
|
243 |
+
res.append(target_path)
|
244 |
+
|
245 |
+
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
246 |
return res
|
247 |
|
248 |
def grasp_generation(case_id):
|
scenediffuser
CHANGED
@@ -1 +1 @@
|
|
1 |
-
Subproject commit
|
|
|
1 |
+
Subproject commit ddcba15d05dcb52f3f3b576f7c60e5e255baa584
|