Spaces:
Sleeping
Sleeping
SceneDiffuser
commited on
Commit
•
9fcef4d
1
Parent(s):
97fb5a2
Update
Browse files- .gitignore +3 -1
- .gitmodules +3 -0
- app.py +96 -152
- interface.py +267 -0
- scenediffuser +1 -0
- style.css +1 -0
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
results
|
3 |
+
src/
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "scenediffuser"]
|
2 |
+
path = scenediffuser
|
3 |
+
url = https://github.com/scenediffuser/Scene-Diffuser
|
app.py
CHANGED
@@ -1,160 +1,104 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
-
import random
|
4 |
-
import pickle
|
5 |
-
import numpy as np
|
6 |
-
import zipfile
|
7 |
-
import trimesh
|
8 |
-
from PIL import Image
|
9 |
-
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
-
|
12 |
-
assert isinstance(scene, str)
|
13 |
-
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/pose_generation/results.pkl')
|
14 |
-
with open(results_path, 'rb') as f:
|
15 |
-
results = pickle.load(f)
|
16 |
-
|
17 |
-
images = [Image.fromarray(results[scene][random.randint(0, 19)]) for i in range(count)]
|
18 |
-
return images
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
with zipfile.ZipFile(results_path, 'r') as zip_ref:
|
27 |
-
zip_ref.extractall('./results/pose_generation/')
|
28 |
-
|
29 |
-
res = './results/pose_generation/tmp.glb'
|
30 |
-
S = trimesh.Scene()
|
31 |
-
S.add_geometry(trimesh.load(scene_path))
|
32 |
-
for i in range(count):
|
33 |
-
rid = random.randint(0, 19)
|
34 |
-
S.add_geometry(trimesh.load(
|
35 |
-
f"./results/pose_generation/mesh_results/{scene}/body{rid:0>3d}.ply"
|
36 |
-
))
|
37 |
-
S.export(res)
|
38 |
-
|
39 |
-
return res
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
if not os.path.exists(res):
|
63 |
-
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/grasp_generation/results.zip')
|
64 |
-
os.makedirs('./results/grasp_generation/', exist_ok=True)
|
65 |
-
with zipfile.ZipFile(results_path, 'r') as zip_ref:
|
66 |
-
zip_ref.extractall('./results/grasp_generation/')
|
67 |
-
|
68 |
-
return res
|
69 |
|
70 |
-
|
71 |
-
assert isinstance(case_id, str)
|
72 |
-
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/path_planning/results.pkl')
|
73 |
-
with open(results_path, 'rb') as f:
|
74 |
-
results = pickle.load(f)
|
75 |
-
|
76 |
-
case = results[case_id]
|
77 |
-
steps = case['step']
|
78 |
-
image = Image.fromarray(case['image'])
|
79 |
-
return image, steps
|
80 |
-
|
81 |
-
with gr.Blocks() as demo:
|
82 |
-
gr.Markdown("# **<p align='center'>Diffusion-based Generation, Optimization, and Planning in 3D Scenes</p>**")
|
83 |
-
gr.HTML(value="<img src='file/figures/teaser.png' alt='Teaser' width='710px' height='284px' style='display: block; margin: auto;'>")
|
84 |
-
gr.HTML(value="<p align='center' style='font-size: 1.25em; color: #485fc7;'><a href='' target='_blank'>Paper</a> | <a href='' target='_blank'>Project Page</a> | <a href='' target='_blank'>Github</a></p>")
|
85 |
-
gr.Markdown("<p align='center'><i>\"SceneDiffuser provides a unified model for solving scene-conditioned generation, optimization, and planning.\"</i></p>")
|
86 |
-
|
87 |
-
## five task
|
88 |
-
## pose generation
|
89 |
-
with gr.Tab("Pose Generation"):
|
90 |
-
with gr.Row():
|
91 |
-
with gr.Column():
|
92 |
-
input1 = [
|
93 |
-
gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes'),
|
94 |
-
gr.Slider(minimum=1, maximum=4, step=1, label='Count', interactive=True)
|
95 |
-
]
|
96 |
-
button1 = gr.Button("Generate")
|
97 |
-
with gr.Column():
|
98 |
-
output1 = [
|
99 |
-
gr.Gallery(label="Result").style(grid=[1], height="auto")
|
100 |
-
]
|
101 |
-
button1.click(pose_generation, inputs=input1, outputs=output1)
|
102 |
-
|
103 |
-
with gr.Tab("Pose Generation Mesh"):
|
104 |
-
input11 = [
|
105 |
-
gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes'),
|
106 |
-
gr.Slider(minimum=1, maximum=4, step=1, label='Count', interactive=True)
|
107 |
-
]
|
108 |
-
button11 = gr.Button("Generate")
|
109 |
-
output11 = gr.Model3D(clear_color=[255, 255, 255, 255], label="Result")
|
110 |
-
button11.click(pose_generation_mesh, inputs=input11, outputs=output11)
|
111 |
-
|
112 |
-
## motion generation
|
113 |
-
with gr.Tab("Motion Generation"):
|
114 |
-
with gr.Row():
|
115 |
-
with gr.Column():
|
116 |
-
input2 = [
|
117 |
-
gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes')
|
118 |
-
]
|
119 |
-
button2 = gr.Button("Generate")
|
120 |
-
with gr.Column():
|
121 |
-
output2 = gr.Image(label="Result")
|
122 |
-
button2.click(motion_generation, inputs=input2, outputs=output2)
|
123 |
-
|
124 |
-
## grasp generation
|
125 |
-
with gr.Tab("Grasp Generation"):
|
126 |
-
with gr.Row():
|
127 |
-
with gr.Column():
|
128 |
-
input3 = [
|
129 |
-
gr.Dropdown(choices=['contactdb+apple', 'contactdb+camera', 'contactdb+cylinder_medium', 'contactdb+door_knob', 'contactdb+rubber_duck', 'contactdb+water_bottle', 'ycb+baseball', 'ycb+pear', 'ycb+potted_meat_can', 'ycb+tomato_soup_can'], label='Objects')
|
130 |
-
]
|
131 |
-
button3 = gr.Button("Run")
|
132 |
-
with gr.Column():
|
133 |
-
output3 = [
|
134 |
-
gr.Model3D(clear_color=[255, 255, 255, 255], label="Result")
|
135 |
-
]
|
136 |
-
button3.click(grasp_generation, inputs=input3, outputs=output3)
|
137 |
-
|
138 |
-
## path planning
|
139 |
-
with gr.Tab("Path Planing"):
|
140 |
-
with gr.Row():
|
141 |
-
with gr.Column():
|
142 |
-
input4 = [
|
143 |
-
gr.Dropdown(choices=['scene0603_00_N0pT', 'scene0621_00_cJ4H', 'scene0634_00_48Y3', 'scene0634_00_gIRH', 'scene0637_00_YgjR', 'scene0640_00_BO94', 'scene0641_00_3K6J', 'scene0641_00_KBKx', 'scene0641_00_cb7l', 'scene0645_00_35Hy', 'scene0645_00_47D1', 'scene0645_00_XfLE', 'scene0667_00_DK4F', 'scene0667_00_o7XB', 'scene0667_00_rUMp', 'scene0672_00_U250', 'scene0673_00_Jyw8', 'scene0673_00_u1lJ', 'scene0678_00_QbNL', 'scene0678_00_RrY0', 'scene0678_00_aE1p', 'scene0678_00_hnXu', 'scene0694_00_DgAL', 'scene0694_00_etF5', 'scene0698_00_tT3Q'], label='Scenes'),
|
144 |
-
]
|
145 |
-
button4 = gr.Button("Run")
|
146 |
-
with gr.Column():
|
147 |
-
# output4 = gr.Gallery(label="Result").style(grid=[1], height="auto")
|
148 |
-
output4 = [
|
149 |
-
gr.Image(label="Result"),
|
150 |
-
gr.Number(label="Steps", precision=0)
|
151 |
-
]
|
152 |
-
button4.click(path_planning, inputs=input4, outputs=output4)
|
153 |
-
|
154 |
-
## arm motion planning
|
155 |
-
with gr.Tab("Arm Motion Planning"):
|
156 |
-
gr.Markdown('Coming soon!')
|
157 |
-
|
158 |
-
gr.Markdown("<p>Note: Currently, the output results are pre-sampled results. We will deploy a real-time model after we release the code.</p>")
|
159 |
-
|
160 |
-
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append('./scenediffuser/')
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
import interface as IF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
with gr.Blocks(css='style.css') as demo:
|
9 |
+
with gr.Column(elem_id="col-container"):
|
10 |
+
gr.Markdown("<p align='center' style='font-size: 1.5em;'>Diffusion-based Generation, Optimization, and Planning in 3D Scenes</p>")
|
11 |
+
gr.HTML(value="<img src='file/figures/teaser.png' alt='Teaser' width='710px' height='284px' style='display: block; margin: auto;'>")
|
12 |
+
gr.HTML(value="<p align='center' style='font-size: 1.2em; color: #485fc7;'><a href='https://arxiv.org/abs/2301.06015' target='_blank'>arXiv</a> | <a href='https://scenediffuser.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/scenediffuser/Scene-Diffuser' target='_blank'>Code</a></p>")
|
13 |
+
gr.Markdown("<p align='center'><i>\"SceneDiffuser provides a unified model for solving scene-conditioned generation, optimization, and planning.\"</i></p>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
## five task
|
16 |
+
## pose generation
|
17 |
+
with gr.Tab("Pose Generation"):
|
18 |
+
with gr.Row():
|
19 |
+
with gr.Column(scale=2):
|
20 |
+
selector1 = gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes', value='MPH16', interactive=True)
|
21 |
+
with gr.Row():
|
22 |
+
sample1 = gr.Slider(minimum=1, maximum=8, step=1, label='Count', interactive=True, value=1)
|
23 |
+
seed1 = gr.Slider(minimum=0, maximum=2 ** 16, step=1, label='Seed', interactive=True, value=2023)
|
24 |
+
opt1 = gr.Checkbox(label='Optimizer Guidance', interactive=True, value=True)
|
25 |
+
scale1 = gr.Slider(minimum=0.1, maximum=9.9, step=0.1, label='Scale', interactive=True, value=1.1)
|
26 |
+
button1 = gr.Button("Run")
|
27 |
+
with gr.Column(scale=3):
|
28 |
+
image1 = gr.Gallery(label="Image [Result]").style(grid=[1], height="50")
|
29 |
+
# model1 = gr.Model3D(clear_color=[255, 255, 255, 255], label="3D Model [Result]")
|
30 |
+
input1 = [selector1, sample1, seed1, opt1, scale1]
|
31 |
+
button1.click(IF.pose_generation, inputs=input1, outputs=[image1])
|
32 |
|
33 |
+
## motion generation
|
34 |
+
# with gr.Tab("Motion Generation"):
|
35 |
+
# with gr.Row():
|
36 |
+
# with gr.Column(scale=2):
|
37 |
+
# selector2 = gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes', value='MPH16', interactive=True)
|
38 |
+
# with gr.Row():
|
39 |
+
# sample2 = gr.Slider(minimum=1, maximum=8, step=1, label='Count', interactive=True, value=1)
|
40 |
+
# seed2 = gr.Slider(minimum=0, maximum=2 ** 16, step=1, label='Seed', interactive=True, value=2023)
|
41 |
+
# with gr.Row():
|
42 |
+
# withstart = gr.Checkbox(label='With Start', interactive=True, value=False)
|
43 |
+
# opt2 = gr.Checkbox(label='Optimizer Guidance', interactive=True, value=True)
|
44 |
+
# scale_opt2 = gr.Slider(minimum=0.1, maximum=9.9, step=0.1, label='Scale', interactive=True, value=1.1)
|
45 |
+
# button2 = gr.Button("Run")
|
46 |
+
# with gr.Column(scale=3):
|
47 |
+
# image2 = gr.Image(label="Result")
|
48 |
+
# input2 = [selector2, sample2, seed2, withstart, opt2, scale_opt2]
|
49 |
+
# button2.click(IF.motion_generation, inputs=input2, outputs=image2)
|
50 |
+
with gr.Tab("Motion Generation"):
|
51 |
+
with gr.Row():
|
52 |
+
with gr.Column(scale=2):
|
53 |
+
input2 = [
|
54 |
+
gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes')
|
55 |
+
]
|
56 |
+
button2 = gr.Button("Generate")
|
57 |
+
gr.HTML("<p style='font-size: 0.9em; color: #555555;'>Notes: the output results are pre-sampled results. We will deploy a real-time model for this task soon.</p>")
|
58 |
+
with gr.Column(scale=3):
|
59 |
+
output2 = gr.Image(label="Result")
|
60 |
+
button2.click(IF.motion_generation, inputs=input2, outputs=output2)
|
61 |
+
|
62 |
+
## grasp generation
|
63 |
+
with gr.Tab("Grasp Generation"):
|
64 |
+
with gr.Row():
|
65 |
+
with gr.Column(scale=2):
|
66 |
+
input3 = [
|
67 |
+
gr.Dropdown(choices=['contactdb+apple', 'contactdb+camera', 'contactdb+cylinder_medium', 'contactdb+door_knob', 'contactdb+rubber_duck', 'contactdb+water_bottle', 'ycb+baseball', 'ycb+pear', 'ycb+potted_meat_can', 'ycb+tomato_soup_can'], label='Objects')
|
68 |
+
]
|
69 |
+
button3 = gr.Button("Run")
|
70 |
+
gr.HTML("<p style='font-size: 0.9em; color: #555555;'>Notes: the output results are pre-sampled results. We will deploy a real-time model for this task soon.</p>")
|
71 |
+
with gr.Column(scale=3):
|
72 |
+
output3 = [
|
73 |
+
gr.Model3D(clear_color=[255, 255, 255, 255], label="Result")
|
74 |
+
]
|
75 |
+
button3.click(IF.grasp_generation, inputs=input3, outputs=output3)
|
76 |
+
|
77 |
+
## path planning
|
78 |
+
with gr.Tab("Path Planing"):
|
79 |
+
with gr.Row():
|
80 |
+
with gr.Column(scale=2):
|
81 |
+
selector4 = gr.Dropdown(choices=['scene0603_00', 'scene0621_00', 'scene0626_00', 'scene0634_00', 'scene0637_00', 'scene0640_00', 'scene0641_00', 'scene0645_00', 'scene0653_00', 'scene0667_00', 'scene0672_00', 'scene0673_00', 'scene0678_00', 'scene0694_00', 'scene0698_00'], label='Scenes', value='scene0621_00', interactive=True)
|
82 |
+
mode4 = gr.Radio(choices=['Sampling', 'Planning'], value='Sampling', label='Mode', interactive=True)
|
83 |
+
with gr.Row():
|
84 |
+
sample4 = gr.Slider(minimum=1, maximum=8, step=1, label='Count', interactive=True, value=1)
|
85 |
+
seed4 = gr.Slider(minimum=0, maximum=2 ** 16, step=1, label='Seed', interactive=True, value=2023)
|
86 |
+
with gr.Box():
|
87 |
+
opt4 = gr.Checkbox(label='Optimizer Guidance', interactive=True, value=True)
|
88 |
+
scale_opt4 = gr.Slider(minimum=0.02, maximum=4.98, step=0.02, label='Scale', interactive=True, value=1.0)
|
89 |
+
with gr.Box():
|
90 |
+
pla4 = gr.Checkbox(label='Planner Guidance', interactive=True, value=True)
|
91 |
+
scale_pla4 = gr.Slider(minimum=0.02, maximum=0.98, step=0.02, label='Scale', interactive=True, value=0.2)
|
92 |
+
button4 = gr.Button("Run")
|
93 |
+
with gr.Column(scale=3):
|
94 |
+
image4 = gr.Gallery(label="Image [Result]").style(grid=[1], height="50")
|
95 |
+
number4 = gr.Number(label="Steps", precision=0)
|
96 |
+
gr.HTML("<p style='font-size: 0.9em; color: #555555;'>Notes: 1. It may take a long time to do planning in <b>Planning</b> mode. 2. The <span style='color: #cc0000;'>red</span> balls represent the planning result, starting with the lightest red ball and ending with the darkest red ball. The <span style='color: #00cc00;'>green</span> ball indicates the target position.</p>")
|
97 |
+
input4 = [selector4, mode4, sample4, seed4, opt4, scale_opt4, pla4, scale_pla4]
|
98 |
+
button4.click(IF.path_planning, inputs=input4, outputs=[image4, number4])
|
99 |
|
100 |
+
## arm motion planning
|
101 |
+
with gr.Tab("Arm Motion Planning"):
|
102 |
+
gr.Markdown('Coming soon!')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
interface.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
import hydra
|
5 |
+
import numpy as np
|
6 |
+
import zipfile
|
7 |
+
|
8 |
+
from typing import Any
|
9 |
+
from hydra import compose, initialize
|
10 |
+
from omegaconf import DictConfig, OmegaConf
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
|
13 |
+
from utils.misc import compute_model_dim
|
14 |
+
from datasets.base import create_dataset
|
15 |
+
from datasets.misc import collate_fn_general, collate_fn_squeeze_pcd_batch
|
16 |
+
from models.base import create_model
|
17 |
+
from models.visualizer import create_visualizer
|
18 |
+
from models.environment import create_enviroment
|
19 |
+
|
20 |
+
def pretrain_pointtrans_weight_path():
|
21 |
+
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/POINTTRANS_C_32768/model.pth')
|
22 |
+
|
23 |
+
def model_weight_path(task, has_observation=False):
|
24 |
+
if task == 'pose_gen':
|
25 |
+
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/2022-11-09_11-22-52_PoseGen_ddm4_lr1e-4_ep100/ckpts/model.pth')
|
26 |
+
elif task == 'motion_gen' and has_observation == True:
|
27 |
+
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights//ckpts/model.pth')
|
28 |
+
elif task == 'motion_gen' and has_observation == False:
|
29 |
+
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights//ckpts/model.pth')
|
30 |
+
elif task == 'path_planning':
|
31 |
+
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/2022-11-25_20-57-28_Path_ddm4_LR1e-4_E100_REL/ckpts/model.pth')
|
32 |
+
else:
|
33 |
+
raise Exception('Unexcepted task.')
|
34 |
+
|
35 |
+
def pose_motion_data_path():
|
36 |
+
zip_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'hf_data/pose_motion.zip')
|
37 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
38 |
+
zip_ref.extractall(os.path.dirname(zip_path))
|
39 |
+
|
40 |
+
rpath = os.path.join(os.path.dirname(zip_path), 'pose_motion')
|
41 |
+
|
42 |
+
return (
|
43 |
+
os.path.join(rpath, 'PROXD_temp'),
|
44 |
+
os.path.join(rpath, 'models_smplx_v1_1/models/'),
|
45 |
+
os.path.join(rpath, 'PROX'),
|
46 |
+
os.path.join(rpath, 'PROX/V02_05')
|
47 |
+
)
|
48 |
+
|
49 |
+
def path_planning_data_path():
|
50 |
+
zip_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'hf_data/path_planning.zip')
|
51 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
52 |
+
zip_ref.extractall(os.path.dirname(zip_path))
|
53 |
+
|
54 |
+
return os.path.join(os.path.dirname(zip_path), 'path_planning')
|
55 |
+
|
56 |
+
def load_ckpt(model: torch.nn.Module, path: str) -> None:
|
57 |
+
""" load ckpt for current model
|
58 |
+
|
59 |
+
Args:
|
60 |
+
model: current model
|
61 |
+
path: save path
|
62 |
+
"""
|
63 |
+
assert os.path.exists(path), 'Can\'t find provided ckpt.'
|
64 |
+
|
65 |
+
saved_state_dict = torch.load(path)['model']
|
66 |
+
model_state_dict = model.state_dict()
|
67 |
+
|
68 |
+
for key in model_state_dict:
|
69 |
+
if key in saved_state_dict:
|
70 |
+
model_state_dict[key] = saved_state_dict[key]
|
71 |
+
## model is trained with ddm
|
72 |
+
if 'module.'+key in saved_state_dict:
|
73 |
+
model_state_dict[key] = saved_state_dict['module.'+key]
|
74 |
+
|
75 |
+
model.load_state_dict(model_state_dict)
|
76 |
+
|
77 |
+
def _sampling(cfg: DictConfig, scene: str) -> Any:
|
78 |
+
## compute modeling dimension according to task
|
79 |
+
cfg.model.d_x = compute_model_dim(cfg.task)
|
80 |
+
|
81 |
+
if cfg.gpu is not None:
|
82 |
+
device = f'cuda:{cfg.gpu}'
|
83 |
+
else:
|
84 |
+
device = 'cpu'
|
85 |
+
|
86 |
+
dataset = create_dataset(cfg.task.dataset, 'test', cfg.slurm, case_only=True, specific_scene=scene)
|
87 |
+
|
88 |
+
if cfg.model.scene_model.name == 'PointTransformer':
|
89 |
+
collate_fn = collate_fn_squeeze_pcd_batch
|
90 |
+
else:
|
91 |
+
collate_fn = collate_fn_general
|
92 |
+
|
93 |
+
dataloader = dataset.get_dataloader(
|
94 |
+
batch_size=1,
|
95 |
+
collate_fn=collate_fn,
|
96 |
+
shuffle=True,
|
97 |
+
)
|
98 |
+
|
99 |
+
## create model and load ckpt
|
100 |
+
model = create_model(cfg, slurm=cfg.slurm, device=device)
|
101 |
+
model.to(device=device)
|
102 |
+
load_ckpt(model, path=model_weight_path(cfg.task.name, cfg.task.has_observation if 'has_observation' in cfg.task else False))
|
103 |
+
|
104 |
+
## create visualizer and visualize
|
105 |
+
visualizer = create_visualizer(cfg.task.visualizer)
|
106 |
+
results = visualizer.visualize(model, dataloader)
|
107 |
+
return results
|
108 |
+
|
109 |
+
def _planning(cfg: DictConfig, scene: str) -> Any:
|
110 |
+
## compute modeling dimension according to task
|
111 |
+
cfg.model.d_x = compute_model_dim(cfg.task)
|
112 |
+
|
113 |
+
if cfg.gpu is not None:
|
114 |
+
device = f'cuda:{cfg.gpu}'
|
115 |
+
else:
|
116 |
+
device = 'cpu'
|
117 |
+
|
118 |
+
dataset = create_dataset(cfg.task.dataset, 'test', cfg.slurm, case_only=True, specific_scene=scene)
|
119 |
+
|
120 |
+
if cfg.model.scene_model.name == 'PointTransformer':
|
121 |
+
collate_fn = collate_fn_squeeze_pcd_batch
|
122 |
+
else:
|
123 |
+
collate_fn = collate_fn_general
|
124 |
+
|
125 |
+
dataloader = dataset.get_dataloader(
|
126 |
+
batch_size=1,
|
127 |
+
collate_fn=collate_fn,
|
128 |
+
shuffle=True,
|
129 |
+
)
|
130 |
+
|
131 |
+
## create model and load ckpt
|
132 |
+
model = create_model(cfg, slurm=cfg.slurm, device=device)
|
133 |
+
model.to(device=device)
|
134 |
+
load_ckpt(model, path=model_weight_path(cfg.task.name, cfg.task.has_observation if 'has_observation' in cfg.task else False))
|
135 |
+
|
136 |
+
## create environment for planning task and run
|
137 |
+
env = create_enviroment(cfg.task.env)
|
138 |
+
results = env.run(model, dataloader)
|
139 |
+
return results
|
140 |
+
|
141 |
+
|
142 |
+
## interface for five task
|
143 |
+
## real-time model: pose generation, path planning
|
144 |
+
def pose_generation(scene, count, seed, opt, scale) -> Any:
|
145 |
+
scene_model_weight_path = pretrain_pointtrans_weight_path()
|
146 |
+
data_dir, smpl_dir, prox_dir, vposer_dir = pose_motion_data_path()
|
147 |
+
override_config = [
|
148 |
+
"diffuser=ddpm",
|
149 |
+
"model=unet",
|
150 |
+
f"model.scene_model.pretrained_weights={scene_model_weight_path}",
|
151 |
+
"task=pose_gen",
|
152 |
+
"task.visualizer.name=PoseGenVisualizerHF",
|
153 |
+
f"task.visualizer.ksample={count}",
|
154 |
+
f"task.dataset.data_dir={data_dir}",
|
155 |
+
f"task.dataset.smpl_dir={smpl_dir}",
|
156 |
+
f"task.dataset.prox_dir={prox_dir}",
|
157 |
+
f"task.dataset.vposer_dir={vposer_dir}",
|
158 |
+
]
|
159 |
+
|
160 |
+
if opt == True:
|
161 |
+
override_config += [
|
162 |
+
"optimizer=pose_in_scene",
|
163 |
+
"optimizer.scale_type=div_var",
|
164 |
+
f"optimizer.scale={scale}",
|
165 |
+
"optimizer.vposer=false",
|
166 |
+
"optimizer.contact_weight=0.02",
|
167 |
+
"optimizer.collision_weight=1.0"
|
168 |
+
]
|
169 |
+
|
170 |
+
initialize(config_path="./scenediffuser/configs", version_base=None)
|
171 |
+
config = compose(config_name="default", overrides=override_config)
|
172 |
+
|
173 |
+
random.seed(seed)
|
174 |
+
np.random.seed(seed)
|
175 |
+
torch.manual_seed(seed)
|
176 |
+
torch.cuda.manual_seed(seed)
|
177 |
+
torch.cuda.manual_seed_all(seed)
|
178 |
+
|
179 |
+
res = _sampling(config, scene)
|
180 |
+
|
181 |
+
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
182 |
+
return res
|
183 |
+
|
184 |
+
def motion_generation(scene):
|
185 |
+
assert isinstance(scene, str)
|
186 |
+
cnt = {
|
187 |
+
'MPH1Library': 3,
|
188 |
+
'MPH16': 6,
|
189 |
+
'N0SittingBooth': 7,
|
190 |
+
'N3OpenArea': 5
|
191 |
+
}[scene]
|
192 |
+
|
193 |
+
res = f"./results/motion_generation/results/{scene}/{random.randint(0, cnt-1)}.gif"
|
194 |
+
if not os.path.exists(res):
|
195 |
+
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/motion_generation/results.zip')
|
196 |
+
os.makedirs('./results/motion_generation/', exist_ok=True)
|
197 |
+
with zipfile.ZipFile(results_path, 'r') as zip_ref:
|
198 |
+
zip_ref.extractall('./results/motion_generation/')
|
199 |
+
|
200 |
+
return res
|
201 |
+
|
202 |
+
def grasp_generation(case_id):
|
203 |
+
assert isinstance(case_id, str)
|
204 |
+
res = f"./results/grasp_generation/results/{case_id}/{random.randint(0, 19)}.glb"
|
205 |
+
if not os.path.exists(res):
|
206 |
+
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/grasp_generation/results.zip')
|
207 |
+
os.makedirs('./results/grasp_generation/', exist_ok=True)
|
208 |
+
with zipfile.ZipFile(results_path, 'r') as zip_ref:
|
209 |
+
zip_ref.extractall('./results/grasp_generation/')
|
210 |
+
|
211 |
+
return res
|
212 |
+
|
213 |
+
def path_planning(scene, mode, count, seed, opt, scale_opt, pla, scale_pla):
|
214 |
+
|
215 |
+
scene_model_weight_path = pretrain_pointtrans_weight_path()
|
216 |
+
data_dir = path_planning_data_path()
|
217 |
+
|
218 |
+
override_config = [
|
219 |
+
"diffuser=ddpm",
|
220 |
+
"model=unet",
|
221 |
+
"model.use_position_embedding=true",
|
222 |
+
f"model.scene_model.pretrained_weights={scene_model_weight_path}",
|
223 |
+
"task=path_planning",
|
224 |
+
"task.visualizer.name=PathPlanningRenderingVisualizerHF",
|
225 |
+
f"task.visualizer.ksample={count}",
|
226 |
+
f"task.dataset.data_dir={data_dir}",
|
227 |
+
"task.dataset.repr_type=relative",
|
228 |
+
"task.env.name=PathPlanningEnvWrapperHF",
|
229 |
+
"task.env.inpainting_horizon=16",
|
230 |
+
"task.env.robot_top=3.0",
|
231 |
+
"task.env.env_adaption=false"
|
232 |
+
]
|
233 |
+
|
234 |
+
if opt == True:
|
235 |
+
override_config += [
|
236 |
+
"optimizer=path_in_scene",
|
237 |
+
"optimizer.scale_type=div_var",
|
238 |
+
"optimizer.continuity=false",
|
239 |
+
f"optimizer.scale={scale_opt}",
|
240 |
+
]
|
241 |
+
if pla == True:
|
242 |
+
override_config += [
|
243 |
+
"planner=greedy_path_planning",
|
244 |
+
f"planner.scale={scale_pla}",
|
245 |
+
"planner.scale_type=div_var",
|
246 |
+
"planner.greedy_type=all_frame_exp"
|
247 |
+
]
|
248 |
+
|
249 |
+
initialize(config_path="./scenediffuser/configs", version_base=None)
|
250 |
+
config = compose(config_name="default", overrides=override_config)
|
251 |
+
|
252 |
+
random.seed(seed)
|
253 |
+
np.random.seed(seed)
|
254 |
+
torch.manual_seed(seed)
|
255 |
+
torch.cuda.manual_seed(seed)
|
256 |
+
torch.cuda.manual_seed_all(seed)
|
257 |
+
|
258 |
+
if mode == 'Sampling':
|
259 |
+
img = _sampling(config, scene)
|
260 |
+
res = (img, 0)
|
261 |
+
elif mode == 'Planning':
|
262 |
+
res = _planning(config, scene)
|
263 |
+
else:
|
264 |
+
res = (None, 0)
|
265 |
+
|
266 |
+
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
267 |
+
return res
|
scenediffuser
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 2e6055e4aba5807f8ff81b5eaa4b171b93306067
|
style.css
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
#col-container {max-width: 1000px; margin-left: auto; margin-right: auto;}
|